УКРАЇНСЬКИЙ АНТАРКТИЧНИЙ ЖУРНАЛ

УАЖ, № 13, 242-253 (2014)

УДК 594(5)

ГИГАНТСКИЕ КАЛЬМАРЫ РОДА ARCHITEUTHIS В ЮЖНОМ ОКЕАНЕ

В.Л. Юхов

ГП Одесский центр ЮгНИРО, г. Одесса, jugniro@meta.ua

Исследованы кальмары рода Architeuthis - объекты питания кашалотов в Южном океане: распространение, некоторые особенности биологии. Наиболее распространены эти кальмары в зоне 20-45° ю.ш. Южная граница – близ 48° ю.ш. Все случаи их обнаружений находятся в пределах температур поверхностных вод 10-25°C с максимумом при 17-20°C. Взрослые особи населяют мезопелагиаль (200-700 м) и батипелагиаль (700-1500 м), не образуют концентрации. В открытых водах преобладают особи с длиной мантии 80-200 см. Максимальная общая длина кальмара - 1180 см, вес - 260 кг. Максимальная длина мантии - 250 см, вес яиц из яичников - до 6,5 кг. Основная пища – рыба, кальмары.

Гігантські кальмари роду Architeuthis у Південному океані Юхов В.Л.

Реферат. Досліджені кальмари роду Architeuthis – об'єкти харчування кашалотів у Південному океані: поширення, деякі особливості біології. Найбільш розповсюджені ці кальмари у зоні 20-45° півд. ш. Південний кордон – поблизу 48° півд. ш. Усі випадки їх виявлення – в межах температур поверхневих вод 10-25°C, з максимумом при 17-20°C. Дорослі особини населяють мезопелагіаль (200-700 м) та батіпелагіаль (700-1500 м), не утворюють концентрації. У відкритих водах переважають особини з довжиною мантії 80–200 см. Максимальна загальна довжина кальмара – 1180 см, вага – 260 кг. Максимальна довжина мантії – 250 см, вага яєць з яєчників – до 6,5 кг. Основна їжа – риба, кальмари.

Giant calmaries Architeuthis in the Southern ocean

Abstract. There were investigated calamaries Architeuthis - objects of meal for the sperm whales in the Southern ocean expansion, some peculiarities of biology. The most often these calamaries are in the zone of 20–45° of the southern latitude. The Southern border is near 48° of the southern latitude. All cases of its detection are within the temperatures of surface waters 10–25°C, with the maximum at 17–20°C. Adults inhabit mesopelagic zone (200-700 m) and bathypelagic zone (700-1500 m), do not form concentration. Maximum general length of calamary - 1180 cm, weight - 260 kg. Maximum length of mantel is 250 cm, weight of eggs from ovaries is up to 6,5 kg. Main food is fish, calamaries.

Keywords: giant calamaries, Southern ocean, sperm whale, expansion, biology.

1. Введение

Гигантские кальмары рода Architeuthis (сем. Architeuthidae) – крупнейшие из головоногих моллюсков, населяющих Мировой океан в современный период. Их и в наши дни почти не отлавливают современными орудиями лова 1.

В руки исследователей они попадают случайно. Обычно это либо мёртвые, выброшенные морем на берег, либо издыхающие на поверхности воды особи. Большинство

¹ Иностранные названия: Giant squid (англ.), encornet-monstre (франц.), megaluria (испанск.).

находят в Северной Атлантике, у берегов Ньюфаундленда, Англии, Исландии, Норвегии. В северной Пацифике – от Берингова пролива до Японского моря, Калифорнии.

В водах Южного полушария они отмечены у берегов Австралии, Новой Зеландии, Южной Африки. Обычно это также выброшенные морем на побережья кальмары [6]; [18]; [17].

Обитая вдали от активных рыболовных зон, гигантские кальмары редко попадали в руки специалистов. Более доступными они стали в период активного кашалотового промысла в водах Южного полушария.

Источником материала для данной работы послужили кальмары из желудков кашалотов, которых Антарктическая китобойная флотилия (АКФ) «Советская Украина» промышляла с 1964 по 1979 г.

Результаты наблюдений по 1973 г. были опубликованы четыре десятка лет назад [12]. В дальнейшем сборы продолжались вплоть до введения моратория на промысел кашалотов в 1979 г.

Собранные дополнительно материалы сегодня позволяют пополнить знания о биологии этого кальмара, все еще мало доступного и таинственного обитателя глубин Мирового океана. Стало возможным подробнее рассмотреть его распространение в Южном океане, размерный состав, некоторые особенности биологии, вероятное распределение по вертикали.

В полевых условиях осуществлен технохимический анализ тканей. Жирность определяли методом Сокслета, влагу по Дина-Старку, белково-минеральный остаток – по разности. Биохимический состав тканей мандибул и гладиуса выполнен Г.П. Смирновой в лаборатории Московского института тонкой химической технологии АН России.

В работе приводятся некоторые морфометрические сведения и фотоматериалы.

2. Распространение

2.1. Атлантический океан

Наиболее ранние сроки обнаружений архитейтисов – октябрь: западная часть Капской котловины, район Китового хребта. В ноябре их замечали в восточной части Капской котловины, на отмели Агульяс (37°15' ю.ш., 19°10' в.д.), близ о. Тристан-да-Кунья, на стыке двух океанов (меридиан мыса Доброй Надежды). Иногда встречались архитейтисы с одной и даже с двумя регенерировавшими конечностями (руками).

В декабре-январе мы обнаруживали их в центральной части Капской котловины. В марте-апреле с восточной стороны возвышенности Риу-Гранди (32°12' ю.ш., 35°41' з.д.), а также западнее о. Тристан-да-Кунья (севернее 40° ю.ш.). В этот же период их регистрировали в районе юго-западной Атлантики близ 40-й параллели в районе Аргентинской котловины, особенно в её северо-восточной части. Наиболее южное обнаружение отмечено 18 марта 1977 г. (48° ю.ш., 46° з.д.). Температура воды поверхностного слоя в районе Фолклендского разлома составляла 12°С.

Относительно архитейтисов близ Южных Оркнейских о-вов (59°41' ю.ш., 44°14' з.д.) [5] следует отметить следующее. Судя по приведенным промерам (длина головы, ширина и т.д.), в данном случае имело место обнаружение не архитейтиса, а АГК (Mesonychoteuthis hamiltoni, Robson, 1925). Русское его название – антарктический глубоководный кальмар (АГК) [4].

Аналогичное заключение относится и к району Южных Шетландских островов ($61^{\circ}56'$ ю.ш., $52^{\circ}39'$ з.д.). Как и в первом случае, отношение 1/d (длина плавника к его ширине) составляло 0,85. По нашим данным, для архитейтиса оно колеблется от 1,25 до 2,53, в среднем -1,55. Для АГК этот показатель в среднем равен 1,1 при колебаниях от 0,95 до 1,33 (1,44).

Поскольку АГК по своим размерам и массе тела является столь же крупным, как и архитейтис, в те годы по фрагментам его можно было принять за гигантского. Однако температура воды поверхностного слоя вблизи указанных островов близка к 0°С. Это обстоятельство является непреодолимым экологическим барьером для архитейтиса, населяющего умеренно-тёплую зону океанов и не встречающегося в Антарктике.

На акватории юго-западной части океана (зона 40–46° ю.ш.) архитейтисы обнаруживались неоднократно. В пределах зоны 30–43° ю.ш., даже вплоть до 48-й параллели, их отмечали на АКФ «Юрий Долгорукий» [2]; [3]. В указанных районах Атлантики мы встречали их с октября по май близ отмели Риу-Гранди, на юго-востоке Южно-Атлантического хребта, а также в районе хребта Китового в мае. Предполагается, что в районе последнего находится одно из мест их нереста [2].

Ранее этих кальмаров считали представителями фауны Cephalopodia с антиэкваториальным ареалом. Однако в декабре 1972 г. они были обнаружены в тропиках [7]. В ноябре 1976 г. нами они также были отмечены в тропической зоне (3–5° ю.ш., 0–2° з.д). Длина мантии колебалась от 64 до 141 см.

По мере удаления от экватора к югу (в пределах тропической зоны океана) встречаемость архитейтисов среди объектов питания кашалотов возрастала. Так, с 6 по 12 ноября следующего сезона архитейтисы вновь регистрировались нами в приэкваториальнотропической Атлантике ($5-7^{\circ}$ ю.ш., $5-7^{\circ}$ в.д). Длина мантии кальмаров -80-110 см.

Следует отметить, что 26.11.1976 г. близ Южного тропика (23°30' ю.ш., 13°00' з.д.) совместно с архитейтисом были обнаружены крупные мизиды длиной до 35 см. Яйца самок крупные, ярко-оранжевые, с нитевидными отростками. Рядом с мизидами Gnatiophausia indens они казались гигантскими.

Таким образом, сегодня очевидно, что кальмары эти достаточно обычны и в тропиках. Конечно, в экваториально-тропической зоне Атлантики они ни по встречаемости, ни по биомассе существенной роли в рационе кашалотов не играют, т.к. встречаются заметно реже, чем в более высоких широтах. К примеру, в период с 6 по 25 ноября 1977 г. в пределах полосы 6–22° ю.ш. было осмотрено много желудков кашалотов, но лишь в шести из них содержались архитейтисы (немногим более 1% встречаемости). В основном это были особи массой от 7 до 58 кг. Значительно чаще и гораздо более крупные особи обнаруживались в зоне 30–45° ю.ш.

2.2. Индийский океан

Гигантские кальмары из вод этого бассейна были известны и ранее: Южная Африка (Дурбан, бухта Солданья), острова Сен-Поль, берега Австралии [17], Новой Зеландии [18]. Обычно это были находки выброшенных на берег кальмаров.

По материалам наших наблюдений, они достаточно обычны и в открытых водах Индийского океана. Уже в ноябре мы встречали их в тропических водах (19–24° ю.ш.) над глубинами Мозамбикского пролива, на удалении 70 миль от берегов, а также в западной части котловины Транскей, примыкающей к юго-восточным берегам Африки (Порт Элизабет).

На акватории юго-западной части Индийского океана их регистрировали и в декабре близ котловины Агульяс (45°52' ю.ш.). Иногда в районах обнаружений архитейтисов случались интересные находки. Так, 16 мая 1972 г. (35°35' ю.ш., 23°13' в.д.) на отмели Агульяс в желудках кашалотов были найдены крупные, неизвестные нам рыбы (длина 120–130 см, вес 20–30 кг). Иногда в желудке кита совместно с кальмарами содержалось до 12 таких рыб (Taningia Danae).

По определению А.Н. Световидова, это были мориды (сем. Moridae). Они известны по районам юго-восточной и южной оконечности Африки, Мозамбикского пролива. Однако столь крупные мориды на тот период науке не были известны.

Впоследствии нам, как и другим экспедиционным судам и научным группам, поручалось обратить внимание на поиск этих рыб, но никто столь крупных морид на встречал [14].

В водах Индийского океана, как и в Атлантике, архитейтисы обнаруживались совместно с другими видами кальмаров. При этом наиболее часто и в большом количестве это были Taninqia Danae.

Наиболее ранние сроки обнаружения кальмаров — октябрь. В ноябре их отмечали в зоне 30–40° ю.ш., а также севернее 30° ю.ш. Их часто обнаруживали вдоль 40-й параллели в декабре и марте, а севернее — в апреле.

В западной части Индийского океана они встречались в декабре от тропиков до 40-х широт, особенно в зоне 30–40° ю.ш. в апреле.

В центральной части умеренных вод Индийского океана (37°10' ю.ш., 65°56' в.д.) при температуре воды поверхностного слоя 18,6°С встречались крупные архитейтисы. Длина их мантии достигала 230 см. Иногда на мантии отмечали следы присосок.

Крупные кальмары регистрировались в апреле и близ берегов Австралии. К примеру, в районе 34° ю.ш., 116° в.д. архитейтис был обнаружен совместно с химерой, тунцом и кальмарами Taninqia Danae. Здесь же была акула Pseudotriakis microdon длиной 260 см, весом 80 кг, ранее для Индийского океана неизвестная [11].

В мае в районе 35°48' ю.ш., 117°20' в.д. у самки длиной 179 см вес яиц из яичника был равен 4,8 кг. Вместе с архитейтисом в желудке кашалота содержалось много кальмаров рода Histioteuthis и один экземпляр круглоперого кальмара Акимушкина Cycloteuthis Akimushkini [19]. Вообще в районе юго-западных берегов Австралии и Тасмании крупные архитейтисы встречались достаточно часто. Фотография одного из них приводится в монографии «Кашалот» [1].

2.3. Тихий океан

Наблюдения в данном океаническом бассейне осуществлялись в его западной части, от меридиана о. Тасмания (145°в.д.) до 140°з.д. В пределах указанных границ архитейтисы отмечались нами в Тасмановом море (37°57' ю.ш.), а также южнее (45°05' ю.ш., 161° з.д.), в районе юго-восточной части Южной котловины вдоль 40-й параллели. В районе Северной части разлома Элтанин архитейтисы встречались регулярно, обычно по одному экземпляру среди массы Тапіпqіа Danae и др. видов.

В районе плато Кэмпбелл в сентябре 1981 г. с борта РМТ «Днепродзержинск» (Одесса) в ночной трал вместе с путассу был пойман архитейтис весом 220 кг. В районе югозападной части Тихого океана, как и в предыдущих океанских бассейнах, почти все обнаружения этих кальмаров продвинуты к югу до 45–48° ю.ш.

Показатели измерений архитейтиса, обнаруженного 17 апреля 1975 г. (39°00' ю.ш. 160°00' в.д.) в районе Тасманова моря, приведены в табл. 1 (рис. 1).

На участке от Новой Зеландии до южных границ Тасманова моря одиночные крупные архитейтисы (мантия 2,0-2,3 м) отмечались неоднократно. Как и в предыдущих океанических бассейнах, здесь также встречались особи с восстановленными конечностями. Обычно такая рука на треть короче обычной (иногда искривлена). В высоких широтах Антарктики АГК (М. hamiltoni), кальмары Кондакова, Книповича и др. также иногда были с регенерировавшими конечностями.

Голова с одной парой рук -78,2 кг, внутренности -28,8 кг, гонады -6,5 кг. Мантия с плавником -97,3 кг, печень -6,0 кг, гладиус -140,3 г. Итого без трёх рук -216 кг.

В желудке тёмно-коричневая жидкость с включениями обломков крыльев мандибул. Овоциты мелкие, II стадии зрелости.

Вдоль южных и восточных берегов о. Тасмания, где большие глубины близко подходят к острову, отмечались крупные архитейтисы (длина мантии 200 см и более). Их обнаруживали также в районе западной и восточной окраин Тасмановой котловины, в Бассовом проливе. В апреле мы регистрировали их у восточных берегов о. Тасмания, в районе Южной котловины, близ поднятии Чатем, к западу от одноименных островов.

Самые северные обнаружения в Южном полушарии в осенний период (апрель) отмечены в западной части Тасманова моря (38°ю.ш.), а самые южные – над значительными глубинами Южной котловины (46°14' ю.ш.).

Таблица 1 Данные промеров архитейтиса из Тасманова моря

- · · · · · · · · · · · · · · · · · · ·	
Длина мантии	200 см
Ширина мантии	65
Длина плавника	80
Ширина плавника	58
Длина головы	33
Ширина головы	20
Длина рук I	200
Длина рук II	
Длина рук III	
Длина рук IV	-
Длина щупальца	735
Длина булавы	90
Толщина мантии	8,5
Ширина воронки	11,0
Диаметр глаза	18,5
Диаметр присоски на булаве	3,8
Общая длина	968

Рис. 1. Архитейтис, обнаруженный 17 апреля 1975 г. (39°00' ю.ш., 160°00' в.д.) в районе Тасманова моря, и результаты взвешиваний этого кальмара по частям (табл. 1).

Океаническое пространство Тихого океана от 140°3.д. до 90° з.д. не было нами исследовано. Сведений об архитейтисах на участке от о-вов Чатем до побережья Чили нет. Однако, скорее всего, кальмары эти здесь столь же обычны, как в Атлантике и Индийском океане. Подтверждением этому служит находка молоди архитейтиса (длина мантии 45 мм) в районе 19°51' ю.ш., 95°09' з.д. с борта японского НИС «Shoy Maru» [24].

В сезон 1974/1975 гг. с 14 по 28 декабря на акватории в границах 37°12′ – 46°48′ ю.ш. и 80°53′ – 90°22′ з.д. при весьма свежей погоде было добыто и осмотрено 24 самца кашалота длиной 12,1–15,1 м. Среди объектов их питания архитейтисы либо их фрагменты обнаружены не были. Из головоногих преобладали кальмары рода Moroteuthis (M.Robsoni, M.ingens), а также рода Ommastrephes, Tetronychoteuthis, Lepidoteuthis Chiroteuthis. Совместно с перечисленными кальмарами изредка встречались осьминоги и удильщики (Ceratias holbolli) весом от 4.8 до 16.0 кг.

Следует особо отметить, что в следующем сезоне (1974-1975 гг.) примерно в этом же районе среди объектов питания кашалотов сотрудники научной группы иногда обнаруживали фрагменты и части тела архитейтисов. Следовательно, в пределах указанных широт эти кальмары столь же обычны, как и в других районах Южного океана.

О встречаемости архитейтисов в зависимости от широты места в каждом из океанов можно судить по данным рис. 2.

3. Некоторые черты биологии

3.1. Встречаемость при различных температурах воды поверхностного слоя

В процессе сбора материалов мы попытались выявить районы, где архитейтисы могут быть обнаружены с большой долей вероятности. Одним из показателей их наличия в районе может быть температура воды поверхностного слоя. Как оказалось, наиболее часто их обнаруживали в пределах температур от 10 до 25°C с максимумом при 17–20°C.

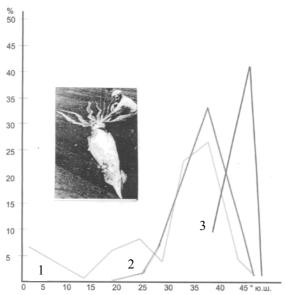


Рис. 2. Встречаемость Architeuthis sp. в различных зонах океанов по широте: 1 - Атлантический океан, 2 - Индийский океан, 3 - Тихий океан

Следует отметить, что в пределах температурных границ их обнаружений крайне редко, одиночными экземплярами, встречались и АГК (Mesonychoteuthis hamiltoni). Например, в мае, в районе $32^{\circ}16'$ ю.ш., $13^{\circ}35'$ в.д. При этом АГК совместно с архитейтисом нам никогда не встречался, даже к югу от 40-й параллели, где АГК не редки. В районах же массовой встречаемости АГК ни архитейтисы, ни их фрагменты никогда не отмечались. К югу от 50-й параллели их нет.

3.2. Вероятное распределение по вертикали

О горизонтах обитания взрослых особей информации мало. В тралирующие орудия лова они попадались редко. Обычно это были одиночные экземпляры с мантийной длиной 2,0–2,2 м, весом до 250 кг, поднятые с глубин 300–1100 м [21].

Недавно японские биологи Цунеми Кубодера (Tsunemi Kubodera) и Кьоичи Мори (Kuoichi Mori) близ о-ва Чичиджима осуществили лов архитейтиса на крючковую снасть. На глубине 900 м кальмар был сфотографирован [8].

С целью получения сведений о вероятных глубинах обитания этих кальмаров мы воспользовались данными о горизонтах погружений кашалотов. В умеренно-тёплых водах океанов информацию получали, применяя гидроакустические станции «Фуруно» и «Финвал» [13].

Как оказалось, самцы длиной 11,0—14,5 м погружались на горизонты до 1,5 тыс. м (максимальная глубина погружения — 2000 м). Предположительно, на этих горизонтах кашалоты и удовлетворяют свои пищевые потребности.

Не поднимаясь в эпипелагиаль, взрослые архитейтисы населяют в открытом океане, скорее всего, мезопелагиаль (200–700 м) и батипелагиаль (700–1500 м), т.е. ведут глубоководный образ жизни.

В приэкваториальной зоне Атлантики среднее значение погружений кашалотов составило 443 м (200–700 м). В юго-западной Атлантике – 720 м. Кашалоты, в желудках которых были обнаружены архитейтисы в Тихом океане, погружались на глубины 200–900 м (1300 м), в среднем – 542 м. Например, 17 апреля 1975 г. (40°50' ю.ш., 164°13' в.д.) вместе с крупным архитейтисом были два мелких (мантия 70–80 см).

3.3. Размеры и масса тела

Длина мантии кальмаров колебалась от 47 до 260 см. Самки повсеместно были крупнее самцов (табл. 2). Преобладали особи, длина мантии которых колебалась в пределах 80–200 см (79,7%). Вне границ указанных пределов длины они представлены близкими соотношениями, соответственно 10,1 и 10,2%.

Минимальная длина мантии измеренного архитейтиса 47 см, крайне редко обнаруживались особи 54–60 см. Максимальная длина мантии самки 260 см.

Вес колеблется в широких пределах, что зависит от общей сохранности кальмара и его внутренностей. Минимальный вес был у кальмара при длине мантии 58 см (общая длина 116 см, вес 2,5 кг). При длине 53 см -2,0 кг. По мере увеличения длины мантии нарастает масса кальмара. В одноразмерных группах имеют место заметные колебания веса, как у самок, так и у самцов. Это связано со степенью развития печени, гонад, сохранности внутренностей, конечностей и других частей тела.

Максимально зарегистрированная масса кальмара -260 кг, самца -150 кг. Средняя масса самок в пределах материала -130.9 кг, самцов -47.1 кг. При этом самки максимальной длины могут иметь меньший вес, чем более крупные. Наиболее обычны особи с мантийной длиной 160-200 см. Например, при общей длине 9.1 м (мантия 198 см) вес кальмара был 195 кг. [22]. Вообще говоря, термин «общая длина архитейтиса» не очень показателен для суждений о его величине.

3.4. Состояние воспроизводительной системы, молодь

К сожалению, материалы по данному вопросу крайне ограничены. По нашим наблюдениям, масса яиц из яичников колеблется в широких пределах, что зависит от размеров самок. Например, в начале апреля в районе между о. Чатем и Новой Зеландией у самки длиной 160 см вес яиц из яичников составил 1100 г (II ст. зрелости). 17 апреля в районе 40°40' ю.ш., 161°00' в.д. (температура поверхности воды 18,2°С) при весе самки 220 кг вес яиц из яичника составил 6,5 кг. При этом, как и в первом случае, овоциты самок оставались на ранних стадиях (II-III ст. зрелости). Некоторые данные, характеризующие соотношения веса самок и яиц из яичников, – в табл. 2.

В Атлантике, например, у самки с мантийной длиной 158 см вес яиц из яичников был равен 3,5 кг. И то же на II-III стадии зрелости (апрель).

Скорее всего, апрель-май – начало созревания, а нерест, вероятно, происходит поздней осенью или в зимний период Южного полушария.

Размерно-весовой состав и вес яиц из яичников

Таблица 2

т азмерно-весовой состав и вес яиц из яичников								
Длина мантии, см	123	160	179	185	187	190	200	225
Вес, кг	44,6	125,0	160,0	165,0	180,0	170,0	220,0	220,0
Вес яиц из	1 1	1 1	4.8	5,0	4,8	5.5	6.5	5.0
яичников, кг	1,1	1,1	7,0	3,0	7,0	3,3	0,5	3,0

По нашим наблюдениям, у самца с мантийной длиной 136 см длина копулятивного органа была 49 см. У крупных особей (мантийная длина 160 см) он достигает 100 см и более. Длина сперматофор – 17 см. У более крупных особей – до 22 см. По другим данным, у самца длиной 132 см сперматофоры 17,5–20,0 см, а зрелые самки были длиной 107–185 см, весом $56-181\ {\rm kr}\ [20].$

О ранней молоди известно, что несколько личинок было поймано планктонной сеткой в слое 0–5 м в новозеландских водах. Длина после выхода из яйца составляла 0,7 см. Часть личинок прожила 70 дней. Их принадлежность к данному роду подтверждена ДНК [8].

3.5. Питание

М. Кларк [17] отмечал, что желудки всех осмотренных им архитейтисов оставались пустыми. По нашим данным, в подавляющем большинстве они также не содержали пищи либо ее остатков. В тех редких случаях, когда остатки обнаруживались, это были фрагменты мелких рыб и головоногих в небольшом количестве.

Длина железистой части желудка с мощной мускулатурой у крупных особей достигает 1 м, что обеспечивает перемешивание пищи и пищеварительных соков. В кутикуле пищевые фрагменты обнаруживаются крайне редко и в очень небольшом количестве.

Например, в ноябре $(32^{\circ}26' \text{ ю.ш.}, 08^{\circ}57' \text{ з.д.}$, температура поверхности воды $17,5^{\circ}\text{C})$ в желудке кальмара с мантийной длиной 200 см содержались остатки мелких головоногих в виде мелконарубленной массы в небольшом количестве. В этом же месяце в районе $35^{\circ}10'$ ю.ш., $00^{\circ}52'$ в.д. (температура поверхности воды $15,6^{\circ}\text{C})$ в желудке кальмара были аналогичные остатки. Желудок второго крупного кальмара содержал незначительное количество фрагментов мелких рыб.

В декабре (33°05' ю.ш., 02°45' з.д., температура поверхности воды 19°С) в желудке архитейтиса были обнаружены остатки мелких головоногих в виде кусочков тканей конечностей с присосками на стебельках (диаметр некоторых из них 1,6-1,7 см, вес -3,1 г), а также косточки и позвонки (длина 0,4 см) мелких рыб, скорее всего, сем. Myctophidae. Кроме того, там были присоски 1,8 см в диаметре, радула достаточно крупного кальмара (ширина 1,5 см), а также крючья АГК (М. hamiltoni). Их длина - до 2,2 см, что соответствует достаточно крупной жертве. У крупных архитейтисов длина радулы достигала 10 см, ширина - 1,6 см [23].

Для сравнения, исследованная нами радула небольшого АГК (длина мантии 140 см) представляла собой аналогичную ленту длиной 6 см, шириной 1 см, несущую ряды хитинизированных зубов. У наиболее крупных АГК размеры радулы должны быть не меньше, чем у архитейтисов.

В марте остатки мелких рыб обнаруживались в p-не 36°31' ю.ш., 25°31' з.д. (температура поверхности воды 18°С). Аналогичные фрагменты рыб и мелких кальмаров обнаруживали в желудках архитейтисов и в Индоокеанском секторе. Остатки мелких кальмаров в виде кусочков тканей, обрывков рук с мелкими присосками содержались в желудках как особей очень крупных, так и средней величины.

Идентичные фрагменты среди остатков пищи в желудках архитейтисов различных размеров отмечались и в Тихоокеанском секторе.

Например, желудок самки длиной 156 см содержал незначительное количество остатков мелких рыб и кальмаров. Близ юго-западных берегов Австралии в желудке кальмара (мантия 179 см) — такие же остатки. Иногда фрагменты мелких рыб извлекались из кутикулы, а в мощном мускулистом желудке никаких следов не было. Остатки мелких рыб и головоногих и ранее отмечались в желудках архитейтисов [12].

4. Печень, возможные паразиты

4.1. Печень

Для архитейтиса, как и для АГК, характерно развитие печени, особенно у самок. Печень хорошо развита в виде цельного органа, светло-коричневого цвета (рис. 3), заключена в прозрачную оболочку. Её длина более чем в 1,6 раза превышает ширину. Масса колеблется, зависит от размеров кальмара. У взрослых особей она удлиненно-вытянутая. Ее масса у крупных особей достигает 6,0–6,2 кг.

По мере увеличения размеров кальмара и нарастания массы тела увеличиваются объём и масса печени. Минимальная масса печени у особей с мантийной длиной около 100 см -360-370 г. Печень массой 1,0-1,2 кг - у особей с мантийной длиной 123-125 см, а массой от 2,0 до 6,2 кг при длине мантии 136-245 см.

В.Л. Юхов: ГИГАНТСКИЕ КАЛЬМАРЫ РОДА ARCHITEUTHIS В ЮЖНОМ ОКЕАНЕ

Рис. 3. Печень архитейтиса

Минимальная масса печени – у особи с мантийной длиной 64 см (ноябрь). Ее вес более чем в 28 раз ниже, чем у кальмара длиной 245 см (апрель). При этом длина мантии больше в 3,8 раза, а масса тела – в 37,3 раза. Гепатосоматический коэффициент варьирует от 1,7 до 3,3%.

Иногда на мантии архитейтисов встречались лункообразные выемки, происхождение которых непонятно. Не исключено, что это следы деятельности паразитов. Из веслоногих ракообразных в качестве эктопаразитов могут быть Penella Balanoptera, как и на тунцах. Из усатых ракообразных, возможно, Conchidermia, или это результаты укусов мелких акул. [9].

5. Технохимические показатели тканей

В качестве самых предварительных данных приводим материалы соотношений отдельных частей тела исследованных архитейтисов (табл. 3). Как видим, общий выход мяса колеблется от 73,05 до 97,0% и зависит от размеров кальмара. Для мантии выход также колеблется, достигая 41,9% у наиболее крупных особей. Для головы и конечностей показатели в пределах 33,7–58,1%. Масса внутренностей достигает 15,2%.

Соотношение частей тела и органов Architeuthis sp.

Таблица 3

Coornomenae nacieu iena a opranos Aremieutins sp.										
			Выход					Внутрен-		
Общая	Длина	Macca,	Всего		Мантия		Голова и		ности,	
длина, см	мантии, см	ΚГ					конечности		всего	
			ΚΓ	%	КГ	%	ΚΓ	%	ΚΓ	%
392	60	6,8		97,0	2,6	38,1	4,1	58,1	1,2	1,75
500	78	12,8	11,2	87,7	4,1	31,9	7,1	55,8	1,4	11,0
475	96	17,3	14,5	83,5	6,0	34,5	8,5	49,99	2,5	14,91
729	123	44,6	39,7	89,0	17,0	38,1	22,7	50,9	4,6	10,31
693	125	47,7	34,9	73,05	19,0	39,3	16,1	33,7	5,5	-
965	200	231,8	185,5	80,0	97,3	41,9	88,2	38,05	35,3	15,2

В полевых условиях осуществлён технохимический анализ тканей архитейтисов, обнаруженных в каждом из океанов (ноябрь, март, апрель, май, табл. 4). По содержанию азота, зольных веществ и жира их мясо ближе к глубоководному кальмару Робуста (M.Robusta). Вероятно, на химический состав тканей влияет и среда обитания. Поскольку гигантские кальмары ведут глубоководный образ жизни, их ткани отличаются невысоким содержанием белка. Мясо из-за наличия группы NH₄ непригодно в пищу.

Результаты исследований тканей архитейтисов

Таблица 4

Месяц, океан	Длина		Содержание					
	мантии,	Масса, кг	Влага	Азот	Жир	Минер.		
	см, пол			x 6,25	жир	вещ-ва		
Март, Тихий	∂88	15,6	91,70	7,29	0,44	0,52		
Май, Индийский	₫89	16,5	90,90	7,30	0,60	1,16		
Ноябрь, Атлантический	∂95	16,3	89,76	8,24	0,48	1,03		
Ноябрь, Атлантический	∂160	95,0	90,6	8,03	0,52	0,58		
Апрель, Индийский	2179	160,0	93,11	5,88	0,35	0,61		
Среднее значение	122,2	40,0	91,21	7,34	0,47	0,78		

Из материалов табл. 4 следует, что ткани кальмара достаточно обводнены (89,76-93,11%). Азотистые вещества в пределах 5,88-8,03%, минеральные от 0,52 до 1,16% (в среднем -0,78%). Показатели жирности тканей варьируют в пределах от 0,35 до 0,60%, в среднем 0,47%.

В полевых условиях был проведен и технохимический анализ тканей кальмара Taningia danae, обычно обнаруживаемого совместно с архитейтисом, который также ведет глубоководный образ жизни. Результаты анализа его тканей таковы: влага -90,7%, азот 6,25-8,44%, жир -0,32%, минеральные вещества -0,50%.

Интересны результаты биохимического анализа мандибул и гладиуса архитейтиса. Оказалось, что они состоят главным образом из комплекса белка и хитина: около 80% белка и 11–12% хитина. В гладиусе белок составляет около половины веса сухого образца, а содержание хитина в 2,5 раза выше, чем в челюстях. Хитиновая фракция гладиуса содержит некоторое количество галактозамина [16].

6. Заключение

В результате исследований стало очевидным, что кальмары рода Architeuthis обычны не только близ берегов, но и в открытых океанских водах Атлантики, Индийского и Тихого океанов.

С сентября по май включительно они встречаются в районах от приэкваториальных вод до границ с 50-й параллелью. В пределах вод Южного океана, включая зону «ревущих сороковых», это преимущественно крупные, половозрелые кальмары. Преобладают особи обоего пола с мантийной длиной 120–200 см. Максимально зарегистрированная длина мантии 260 см, вес 250 кг. Общая длина – 1180 см.

Архитейтисы широко распределены по вертикали, населяя во взрослом состоянии горизонты мезопелагиали (300–700) и батипелагиали (700–1500 м.)

Подрастающая молодь (мантия 50–70 см) совместно с более крупными обнаруживается крайне редко. Ранняя молодь известна из приповерхностных горизонтов.

Взрослые кальмары в открытых водах Южного океана, в отличие от АГК (Mesonychoteuthis hamiltoni), не образуют концентраций и не проникают в воды Антарктики. Они всегда обнаруживаются одиночными особями, главным образом, в зоне $30–45^{\circ}$ ю.ш. в диапазоне поверхностных температур $10–25^{\circ}$ С с максимумом при $17–20^{\circ}$ С.

Вес яиц из яичников, как и печени, у крупных самок достигает к осени 6 кг и более. От весны к осени (октябрь-май) овоциты самок остаются на II-III стадии зрелости. Процесс созревания идёт медленно, нерест скорее всего зимой или поздней осенью.

Основные объекты питания архитейтисов – собратья по отряду, рыбы, в т.ч. батипелагические. Они не столь подвижны, как эврибатные формы, являясь хищниками подстерегающего типа. Нейтральная плавучесть, мощный ловчий аппарат, огромные глаза, увеличение к зиме печени – все это, скорее всего, способствует преследованию добычи без особых энергетических затрат.

Впервые получены данные о технохимическом составе тканей кальмаров рода Architeuthis.

Поскольку изучение их биологии не завершено, результаты проведенных наблюдений несомненно будут дополняться и корректироваться. Нуждаются в уточнении динамика полового цикла, сроки и места нереста, биология молоди. Пристального внимания заслуживает проблема систематики этого крупнейшего из головоногих Мирового океана. Много интересного можно ожидать от биохимических исследований в эволюционном плане.

Благодарности. Выражаю искреннюю признательность НАНЦ МОН Украины за напечатание этой статьи, а также сотрудникам группы АКФ «Советская Украина», биологам Корхову А.И., Неижко В.И., Орлову В.А., Шевченко В.И.; технологам Бабенко В.С., Белозер В.А., Василевскому Б.С., Коваль Ю.Л. – за помощь при сборе материалов в Южном океане, и Смирновой Г.П. (Московский институт тонкой химической технологии АН России) – за анализ биохимического состава мандибул и гладиуса кальмара.

Литература

- 1. Берзин А.А. Кашалот. М., Пищепромиздат, 1971, 367 с.
- 2. **Вовк А.Н., Роменский Л.Л.** К распределению массовых головоногих моллюсков Южной Атлантики. Реф. инф. ЦНИИТЭРХ, 1974, 6. С. 3-4.
- 3. **Вовк А.Н., Несис К.Н., Панфилов Б.Г.** Распределение глубоководных головоногих моллюсков Южной Атлантики и прилегающих вод (преимущественно по анализам питания кашалотов). В кн.: Моллюски, их система, эволюция и роль в природе (автореф. доклада). Л., 1975. С. 162–164.
- 4. **Клумов С.К., Юхов В.Л.** Mesonychoteuthis hamiltoni Robson, 1925 (Cephalopodia, Oegopsida) и его значение в питании кашалота антарктических вод. Антарктика, 1975, вып. 14. С. 159–189.
- 5. **Корабельников** Л**.В.** О питании кашалотов в антарктических морях. Природа, 1959, №3. С. 103-104.
 - 6. **Несис К.Н.** Гигантские кальмары. Природа, 1974. №6. С. 55–60.
- 7. **Нигматуллин Ч.М.** О находке гигантского кальмара Architeuthis в экваториальных водах Атлантического океана. Биология моря, 1976, №4. С. 29–31.
- 8. **Островский А.Н.** Повелители бездны. Серия «Разнообразие животных», 2009, М., СПб.: 216 с.
- 9. **Шевченко В.И.** Загадка «белых шрамов» на теле китов. Природа, Наука, М., 1970. 6. С. 72-73.
- 10. Шевцов Г.А., Долбина Н.В. Химический анализ кальмара Робуста. 1975. «Рыбное хозво» №1. С. 71-72.
- 11. **Юхов В.Л.** Новый для Индийского океана вид акулы Pseudotriakis microdon рода Pseudotriakis. Тр. молодых ученых ВНИРО, ОНТИ. 1970. вып. IV. С. 133–135.
 - 12. Юхов В.Л. Находки гигантских кальмаров. Природа. 1974. №6. С. 60–63.
- 13. **Юхов В.Л.** Наблюдения за гидробионтами в Антарктике с применением гидроакустических приборов. Всесоюз. научн. конференция. Сырьевые ресурсы Антарктической зоны и проблемы их рационального использования. Тезисы докл. 4–6 окт. Керчь, 1983. С. 150.
 - 14. Юхов В.Л. В морях Антарктики и Южном океане. Одесса, «Астропринт», 2009, 358 с.

- 15. **Юхов В.Л.** Антарктический глубоководный кальмар (АГК) Mesonychoteuthis hamiltoni Robson, 1925. Распространение и границы ареала. Труды ЮгНИРО. Т.50. С. 241–248.
- 16. **Юхов В.Л.** Некоторые черты биологии антарктического глубоководного кальмара (АГК) Mesonychoteuthis hamiltoni Robson, 1925. VI MAK. Киев, 2013.
- 17. **Clarke M.R.** Review of the Systematic and Ecology of oceanic Squids. Advanced in Marine biology. 1966. Vol. 4, p. 93–300.
- 18. **Dell R.K.** A specimen of the Giant Squid Architeuthis from New Zeeland. Records of the Dominion Museum in Zoology. 1970. Vol. 7, p. 25–36.
- 19. Filippova J.A. A new species of the genus Cycloteuthis. Malacol. Rew. 1968. V. 1, p. 119-124.
- 20. **Voss G.L.** Some aspects of the systematic and biology of squid of the genus Architeuthis based land waters. Sump. Amer. Malacolog. 1991. Bull. Mar. Sci. 49, №1-2. P. 457–481.
- 21. **Perez-Gondaras, Guerra Angell.** Archit. de sudafrica: nuevas citas y consideraciones biologicas. 1989. Sci. mar. − 53, №1. − P. 113–116.
- 22. Roper C.F.E. "Smithsonian Institution Scientific Event Alert Network Bukketin", 1980, V. 5, N2, p. 11.
 - 23. **Roper E. and Boss K.Y.** The Giant Squid. 1982. Scient Amer. V. 246. №4, p. 82–89.
- 24. **Roper C.F.E. and Young R.E.** First records of juvenile giant squid Architeuthis (Cephalopodia, Oegopsida). Proc. Bld. soc. Wash. 85. 1972. 16, p. 205–222.