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Summary. The gravitation effect of topographic masses is very important for the gravity anomaly 
calculations and geoid heights determination. The new approach for the computation of the topographic-
isostatic corrections and indirect effect of topography in spherical approximation is developed and tested in 
Antarctic region. 
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Реферат. При вивченні гравітаційного поля Землі у випадку обчислення як гравітаційних аномалій, 
так і висот геоїда повинен бути врахований гравітаційний ефект топографічних мас. Розроблено 
методику обчислення топографо-ізостатичних поправок та поправок на рельєф у сферичній 
апроксимації з перемінною густиною. 
Ключові слова: сила тяжіння, територіальний ефект, Мохо, топографо-ізостатичні поправки.  

 
Реферат. При изучении гравитационного поля Земли в тех случаях, когда вычисляются как 
гравитационные аномалии, так и высоты геоида, следует учитывать гравитационный эффект 
топографических масс. Разработана методика вычисления топографо-изостатических поправок и 
поправок на рельеф в сферической аппроксимации с переменной плотностью. 
Ключевые слова: сила притяжения, территориальный эффект, Мохо, топографо-изостатические 
поправки. 

 
Introduction  

 
Computation of topographic corrections to measured values of functionals of the disturbing 

potential is one among key problems of the physical geodesy. In the frame of the classical 
approach to the determination of the disturbing potential based on the famous Stokes integral 
formula, introducing of such corrections provides the basic condition of absence of attracting 
masses outside the geoid. In the frames of advanced approaches based on application of the 
remove-restore procedure, introducing of topographic corrections leads to essential smoothing of a 
residual field due to elimination of very high frequencies. As a result, we may hope on more stable 
determination of the disturbing potential. 

In general, the fundamental requirement of absence of zero-degree harmonic in the disturbing 
potential (Heiskanen and Moritz, 1967; Moritz, 1980; Neyman, 1979) can be violated by 
application of topographic mass potential TV  in the remove-restore procedure. This essential 

disadvantage may be eliminated by additional introducing the isostatic compensation potential IV  
in accordance with one of known compensation model based on equal mass principle (Moritz, 
1990). As a result, we come to the topographic / isostatic correction 
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At arbitrary point Р at the Earth’s surface the potential of masses located between the geoid 
surface 

),(11 rr  ,                                                           (2) 
and the Earth’s physical surface 

),(22 rr  ,                                                          (3) 
may be defined by the integral (Heiskanen and Moritz, 1967): 
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where, in general, the density c  of the Earth’s crust is considered as 

),,(  rcc  .                                                        (5) 
In the above expressions G is the gravitational constant, l is spatial distance between the point 

Р and the mass element  ddrdrdm c sin2 : 

cos222 rrrrl PP  ,                                                (6) 

Pr  is the geocentric distance of the point Р,  is the geocentric angular distance between the point 
P and the mass element dm : 

)cos(sinsincoscoscos PPP   ,                             (7) 

PP  ,  are spherical coordinates (polar angle and longitude, respectively) of the point P, and 
,  are spherical coordinates of the mass element dm . 

The potential of compensating masses located between the surfaces 
),(11 tt  ,     ),(22 tt  ,                                              (8)     

may be defined in similar way by the integral 
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with a variable density 
),,(  r .                                                      (10) 

With the definitions (4) and (9), total topographic / isostatic correction is expressed by the 
sum 

)()()( PVPVPV ITTI  ,                                                  (11) 
and any linear geodetic functional (Moritz, 1980; Neyman, 1979) of the potential (11) can be 
written in the form 
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So, by applying the traditional spherical approximation (Heiskanen and Moritz, 1967), we get 
the attraction of topographic and compensating masses: 
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which is nothing else but the effect of the potential (11) into gravity disturbances: 
)()( PAPg TITI  .                                                       (14) 

In similar way we get the effects of the potential (11) into gravity anomalies 
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and into geoid heights as well: 
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where P  is normal gravity at the point P. 
By analogy with the traditional disturbing potential T, we must require that zero-degree 

harmonic is absent in the potential (11). This requirement is achieved if the sum of topographic 
and compensating masses is equal to zero. As a result, we come to the condition 
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which must be taken into account in computations of topographic-isostatic corrections. 
 
Spherical approximation of the topographic / isostatic potential 

 
Now we will apply the next traditional assumptions: 
 the figure of the geoid is the sphere of mean Earth’s radius 

constRr 1 ;                                                            (18) 
 the topographic masses have constant density 

constc  .                                                              (19) 
Also we will use the well-known Airy-Heiskanen model with local isostatic compensation 

(Moritz, 1990) that leads to next additional assumptions: 
 the compensation masses have constant density, which is equal to density jump at the 

crust-mantle boundary (Moho boundary): 
const ;                                                            (20) 

 without the topographic and compensating masses, the (normal) Earth’s crust have the 
(normal) thickness 

0D ,                                                                 (21) 
and bounded by the geocentric radii 

constrRDRtconst  11 .                                       (22) 
We use these conditions for the deriving of the Moho boundary and the integration over 

geocentric distance. Next, more adequate conditions will be considered for the developing of the 
corresponding algorithm, which allows to use measured values of densities and Moho depths. 

 
Moho boundary from zero mass condition 

 
With the above assumptions, the zero mass condition (17) may be expressed especially for the 

case of local compensation as 
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Considering (23) as a third degree equation regarding 2t , we get 
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This expression gives the geocentric distance of Moho boundary, obtained in the frame of 
Airy-Heiskanen model in the spherical approximation. Note here, that by representing 2t  and 2r  
in the forms 
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dDRt 2 ,      hRr 2 ,                                            (25) 
substituting (25) into (24) and applying Taylor linearization, we get the expression  
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which coincides exactly with that used in (Rummel et al., 1988; Tsoulis, 2001) for 
investigations of spectral properties of topographic / isostatic potential. 

 
Integration over geocentric distance 

 
Next, we replace the integration over ,  by the integration over spherical distance   and 

azimuth   in (4), (11). With the assumptions (18) – (22) the potentials become 
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After the integration over the variable r, we come to 
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where 
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The function (31) has no any singularity within the interval ],0[   . With 1x  it follows 
immediately from (31): 
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In the case 1x  the function (31) gives 
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By differentiating (29), (30) with respect to Pr , we get in accordance with (13): 
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Again, the function (40) has no singularity within the interval ],0[   . With 1x  we get 
directly: 

0),()0,(  xaxa .                                                  (41) 
With 1x  the function (40) transforms to 
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and taking into account (36) and (37) we see that 
0),1( a ,                                                           (43) 
1)0,1( a .                                                            (44) 

As a result, we see that the function (40) has the jump at )0,1(  x . The functions (31) 
and (40) are shown in the Figure 1. for 1x . 
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Fig. 1. Functions ),1( v  (simple curve) and ),1( a  (bold curve). 

 
Integration over spherical template compartments 

 
Now we divide the spherical Earth’s surface onto blocks in such a way that the geocentric 

distance (3) of the Earth’s physical surface and the densities c ,   may be taken as a constant 
within each block. If k-th block is bounded by the azimuths 21 ,  and the spherical distances 

21, , we can write 
constc ),(  ,     constr ),(2  ,     ],[ 21   ,      ],[ 21  .         (45) 

Also we have from (24) and (45): 
const ),(  ,     constt ),(2  ,     ],[ 21   ,      ],[ 21  .        (46) 
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These assumptions allow performing the integration within a block in (29), (30), (38) and 
(39). As a result, the following expressions are valid for a block: 
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In these formulas 
12   ,                                                        (51) 
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and the quantities x  and   are defined by the expressions (32), (33) respectively. 

The functions (52), (53) have not a singularity at 0 : 
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Moreover, these functions have non-singular first order derivatives with respect to : 
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Figure 2 shows the functions (52), (53) with 1x . 
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Fig. 2. Functions ),1( w  (simple curve) and ),1( b  (bold curve). 
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As a result, we can get potentials of topographic and compensating masses as well as 
corresponding attractions by the summation over all compartments 
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Derived expressions realize application of spherical mathematical template for computation 
of 3 dimensional integrals for topographic and isostatic potentials and corresponding attractions. In 
principle, such approach is well known in gravimetry and physical geodesy. For example, classical 
handbook by W.A.Heiskanen and Н.Moritz (1967) contains detailed consideration of application 
of a mathematical template for computation of topographic / isostatic corrections in plane 
approximation. 

  
Conclusions 
 
Both above considered approaches to computation of topographic / isostatic corrections are 

based on application of mathematical templates (spherical or planar) constructed around a point of 
interest. Closed expressions for the potential and the attraction obtained for each compartment of a 
template provide good practical flexibility of the discussed technique. In fact, because the 
requirements on constant densities c  and   are essential strictly just within a compartment, 
we see the possibility to use observed density data without any modifications of above derived 
expressions (47) – (50) or (82) – (85). Moreover, seismically observed Moho depth data can be 
used also within each compartment. 

Using the ETOPO1 digital terrain model (Fig. 3 and 4) we get two sets of the terrain 
reductions, one based on topographic surface data, second one – on the combination of the ice 
shield data and topography (Fig. 3–6 see at  the color paste between pages 112 and 113).   

From the Fig. 5 we can really fill how big the differences between the ice shield and 
topography at the Antarctic continent.  

As a result two sets of the Fay anomaly were calculated. In the next step on the frame of well-
known remove-restore technic the EGM2008 global gravity model was removed from the resulted 
sets of Fay anomalies. Using the sequential multipole analysis the residual gravity field was 
approximated by the sets of multipoles of different degree and order. But this is a topic of another 
paper. 

With gridded data we can provide simple and effective interpolation of corresponding values 
onto centers of a template compartments. Usually, regular height data are available in the form of 
digital terrain models (DTM) with various resolutions. Much probably that data of other types are 
not available as corresponding grids. In this case general prediction techniques should be applied 
to irregular data for a grid creation. Next, we should note that choice of a template steps over 
azimuth and spherical (or horizontal) distance seems as practically important problem. 

Indeed, very small steps will produce essential computation time expenses whereas too large 
steps will violate the conditions (45), (46) or (80), (81). In this view we should note that template 
steps must be agreed with smallest size of used grids. In addition, it may be necessary to perform 
grid densification in small vicinity of a computation point. It is obvious that application of the 
spherical template lead to more consistent results. 

Finally, we should note that some modification of classical mathematical template was 
proposed by R.Forsberg (1984), who used division onto rectangular blocks in accordance with 
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DTM structure. However, potentials of rectangular prism were derived in (Forsberg, 1984) only as 
plane approximations of the potentials (4), (9). In addition, singularities may appear for some 
positions of computation point regarding DTM nodes. With this respect we can conclude that the 
technique based on rectangular prism potentials has not essential advantages in comparison with 
the techniques based on classical mathematical templates. 
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Fig. 3. ETOPO 1 terrain surface Fig. 4. ETOPO 1 ice surface

Fig. 5. Ice surface and topography along the track limited by 90S to 70S and 90W

Fig. 6. Terrain correction based on combination of ice surface and topography data (mGal)


