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Summary. The gravitation effect of topographic masses is very important for the gravity anomaly
calculations and geoid heights determination. The new approach for the computation of the topographic-
isostatic corrections and indirect effect of topography in spherical approximation is developed and tested in
Antarctic region.
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Pedepar. [Ipy BrBuUeHHI rpaBiTaliifiHOro mosst 3emMil y BUMAAKy OOYMCICHHS SIK IpaBiTalliiHUX aHOMAIii,
TaKk i BHCOT reoifa NMOBHHEH OyTH BpaxOBaHWH rpaBiTaliiiHui edekt TonorpadiuHux mac. PospobieHo
METOAMKY OOUMCIICHHA TOnorpado-i3ocTaTHYHUX MONPaBOK Ta IIONPABOK Ha peibed y chepudHiit
arnpoKcUMalil 3 HepeMiHHOIO I'YCTHHOIO.

KurouoBi ci10Ba: cuna TsoKiHHA, TepuTOpiasibHui edekt, Moxo, Tonorpado-i30cTaTH4Hi MONIPaBKH.

Pedepar. Ilpu wu3yyeHMM TIpaBUTALMOHHOrO IO 3eMIM B TEX CIydasX, KOrJa BBIUMCIAIOTCA Kak
IPABUTALIMOHHBIC AHOMAJMM, TaK W BBICOTBl T'€OMIA, CJIEAYeT YYUTHIBATh TI'PAaBUTALMOHHBIA 3ddexT
Tonorpaguueckux Macc. PaspaboraHa MeTonuka BBIYMCICHHUS TONOrpad)o-n30CTaTUYECKUX HOMPABOK U
IONPaBOK Ha penbed B chepHuecKoii anmpoKCUMAaIMK ¢ EPEMEHHON IIIOTHOCTBIO.

KnroueBble ciioBa: cuina NPUTSDKEHMS, TeppUTOpHANbHBIN 3ddexr, Moxo, Tonorpado-u3ocraTuieckue
TONPaBKH.

Introduction

Computation of topographic corrections to measured values of functionals of the disturbing
potential is one among key problems of the physical geodesy. In the frame of the classical
approach to the determination of the disturbing potential based on the famous Stokes integral
formula, introducing of such corrections provides the basic condition of absence of attracting
masses outside the geoid. In the frames of advanced approaches based on application of the
remove-restore procedure, introducing of topographic corrections leads to essential smoothing of a
residual field due to elimination of very high frequencies. As a result, we may hope on more stable
determination of the disturbing potential.

In general, the fundamental requirement of absence of zero-degree harmonic in the disturbing
potential (Heiskanen and Moritz, 1967; Moritz, 1980; Neyman, 1979) can be violated by
application of topographic mass potential J. in the remove-restore procedure. This essential

disadvantage may be eliminated by additional introducing the isostatic compensation potential 7,

in accordance with one of known compensation model based on equal mass principle (Moritz,
1990). As a result, we come to the topographic / isostatic correction

Ve, =V, +V,. (1)
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At arbitrary point P at the Earth’s surface the potential of masses located between the geoid
surface

n=rn(%A), 2
and the Earth’s physical surface
r,=r(3,4), A3)
may be defined by the integral (Heiskanen and Moritz, 1967):
2wy 2 -
v(P)=G[[[p." Slm 8 ardsdz, 4)
00n

where, in general, the density p, of the Earth’s crust is considered as

p.=p.(r,8,1). %)
In the above expressions G is the gravitational constant, / is spatial distance between the point
P and the mass element dm = p_r* sin 9drd 9dA :

l:\/r,f+r2—2rprcosu/, (6)

7, is the geocentric distance of the point P, y is the geocentric angular distance between the point
P and the mass element dm :

cosy =cosdcos P, +sinIsing, cos(A—1,), (7)

9 »>Ap are spherical coordinates (polar angle and longitude, respectively) of the point P, and

9, A are spherical coordinates of the mass element dm .
The potential of compensating masses located between the surfaces

=682, t,=6,(4,4), (®)
may be defined in similar way by the integral
2rm by 2
(P =G [[[ap” SN dgdi, ©)
004 l
with a variable density
Ap =Ap(r,3,1). (10)

With the definitions (4) and (9), total topographic / isostatic correction is expressed by the
sum
Vi (P) =V, (P)+V,(P), (11)
and any linear geodetic functional (Moritz, 1980; Neyman, 1979) of the potential (11) can be
written in the form
LP(VTI)ZLP(VT)+LP(V1)' (12)
So, by applying the traditional spherical approximation (Heiskanen and Moritz, 1967), we get
the attraction of topographic and compensating masses:

AT[:_iVT[:_iVT_iV[:AT+A[’ (13)
or, or, or,
which is nothing else but the effect of the potential (11) into gravity disturbances:
08y (P)= Ay (P). (14)
In similar way we get the effects of the potential (11) into gravity anomalies
AgT[(P) - _ 8I/T[(P) _ 2I/T[(P) — 5gT[(P) _ 2I/T[(P) , (15)
or, 7 Tp

and into geoid heights as well:
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V., (P
SN, (P)= V(D) (16)
P
where ¥, is normal gravity at the point P.

By analogy with the traditional disturbing potential 7, we must require that zero-degree
harmonic is absent in the potential (11). This requirement is achieved if the sum of topographic
and compensating masses is equal to zero. As a result, we come to the condition

il pcrzdr+t2 Apr’dr |sin9d9dA =0, (17)
]| Joorar+|
00\ n 4

which must be taken into account in computations of topographic-isostatic corrections.
Spherical approximation of the topographic / isostatic potential

Now we will apply the next traditional assumptions:
¢ the figure of the geoid is the sphere of mean Earth’s radius

r =R = const ; (18)
¢ the topographic masses have constant density
p. =const . (19)

Also we will use the well-known Airy-Heiskanen model with local isostatic compensation
(Moritz, 1990) that leads to next additional assumptions:
¢ the compensation masses have constant density, which is equal to density jump at the
crust-mantle boundary (Moho boundary):
Ap = const ; (20)
¢ without the topographic and compensating masses, the (normal) Earth’s crust have the
(normal) thickness
D>0, €2y
and bounded by the geocentric radii
const=t, =R—-D<R=r =const. (22)
We use these conditions for the deriving of the Moho boundary and the integration over
geocentric distance. Next, more adequate conditions will be considered for the developing of the
corresponding algorithm, which allows to use measured values of densities and Moho depths.

Moho boundary from zero mass condition

With the above assumptions, the zero mass condition (17) may be expressed especially for the
case of local compensation as

153 b
pL,Irzdr+Ap JrzdI’:O- (23)
R R-D
Considering (23) as a third degree equation regarding £, , we get

f =3J(R—D)3 ol R 24)

This expression gives the geocentric distance of Moho boundary, obtained in the frame of
Airy-Heiskanen model in the spherical approximation. Note here, that by representing ¢, and 7,
in the forms
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t,=R-D-d. r,=R+h. (25)
substituting (25) into (24) and applying Taylor linearization, we get the expression
2
, R
d=Pe| S|, (26)
Ap\ R—-D

which coincides exactly with that used in (Rummel et al., 1988; Tsoulis, 2001) for
investigations of spectral properties of topographic / isostatic potential.

Integration over geocentric distance

Next, we replace the integration over 3, 1 by the integration over spherical distance ¥ and
azimuth & in (4), (11). With the assumptions (18) — (22) the potentials become

2wy
Vo (P)=Gp, | [[“=E drdyda (27)
00R
V,(P)=GAp jj j r Sm"”dd wda - (28)
00R-D
After the integration over the variable 7, we come to
2 2
V. (P)=Gp, L j j (29)
0
2 nlrm
V,(P)=GAp ijj dady . (30)
00
where
v=v(x,y)= {é(x +3cosy)+(3cos’ w —1)In(¢ + x — cos y/)}siny/ , 31
€=L=\/1+x2—2xcosw, (32)
Tp
y="". (33)
rP

The function (31) has no any singularity within the interval y €[0,7]. With x =1 it follows
immediately from (31):
v(x,0) =v(x,7)=0. (34)

In the case x =1 the function (31) gives
v(Ly)= {(30052 v —1) ln[2 sm% +2sin’ 5 ) +2(3cosy +1)sin E}smw ; (35)

and, therefore

v(,7)=0, (36)
v(1,0) = lim v(Ly) = 0. (37)

By differentiating (29), (30) with respect to 7, , we get in accordance with (13):

T2

A (P)= GpchJ Ja (38)
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2
A,(P)= GAprPJ Ja an dody (39)
00
where
¥
a=a(x,y)= 7sin v —v(x,y)- (40)
Again, the function (40) has no singularity within the interval y €[0,7]. With x #1 we get
directly:
a(x,0)=a(x,7)=0. (41)
With x =1 the function (40) transforms to
a(ly)= cos% —v(Ly), (42)
and taking into account (36) and (37) we see that
a(l,r)=0, (43)
a(1,0)=1. (44)

As a result, we see that the function (40) has the jump at (x =1, =0). The functions (31)
and (40) are shown in the Figure 1. for x=1.

T v(Ly), ally)

Fig. 1. Functions v(L,yr) (simple curve) and a(l,y) (bold curve).

Integration over spherical template compartments

Now we divide the spherical Earth’s surface onto blocks in such a way that the geocentric
distance (3) of the Earth’s physical surface and the densities p_, Ap may be taken as a constant

within each block. If k-th block is bounded by the azimuths ¢ ,o, and the spherical distances
w,,¥,, We can write
p.(y,a)=const, r,(y,a)=const, wyely,y,], oaecla,a,]. (45)
Also we have from (24) and (45):
Ap(y,a)=const, t,(y,a)=const, yely,y,], aclq,o,]. (46)
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These assumptions allow performing the integration within a block in (29), (30), (38) and

(39). As a result, the following expressions are valid for a block:

1)

n
b
R

2
VE(P)=Gp, %Aa-w

L4
v,

b
14

2
vE(P) = GAp%PAa- |

2

Ay (P)=Gp,rsAa+b

rz V/
R b
i
v,

Af(P)=GAp-r,Aa-b

[2)
R-D
4]
In these formulas

Aa=a,-a,
w=w(x,l//)=€{§(2 +(x—cosy/)cosy/}+sin2l//cosylln(£+x—cosy/),

b= b(x,l//) = éxz - W(x,l,l/) >
and the quantities X and ¢ are defined by the expressions (32), (33) respectively.
The functions (52), (53) have not a singularity at ¥ =0

1
w(x,0) = llylil% wix,w) = §|x - 1|(x -D(2x+1),

b(x,0) = }}i‘éb(x"/’) = %‘x —1|(x* +x+1).

Moreover, these functions have non-singular first order derivatives with respect to v

owery)|  _abtry)| 0.
oy ‘V/=0 oy ‘V/=0
Figure 2 shows the functions (52), (53) with x =1.

2.0 1 w(ly), b(lLy)

0.5
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Fig. 2. Functions W(1,7) (simple curve) and b(1,/) (bold curve).
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As a result, we can get potentials of topographic and compensating masses as well as
corresponding attractions by the summation over all compartments

Ve (P)=Y Vi (P) (57)
V,(P)= iV,"'(P)a (58)
A,(P)= kZA;' (P)> (59)
4,(P)= iA,k (P)- (60)

Derived expressions realize application of spherical mathematical template for computation
of 3 dimensional integrals for topographic and isostatic potentials and corresponding attractions. In
principle, such approach is well known in gravimetry and physical geodesy. For example, classical
handbook by W.A.Heiskanen and H.Moritz (1967) contains detailed consideration of application
of a mathematical template for computation of topographic / isostatic corrections in plane
approximation.

Conclusions

Both above considered approaches to computation of topographic / isostatic corrections are
based on application of mathematical templates (spherical or planar) constructed around a point of
interest. Closed expressions for the potential and the attraction obtained for each compartment of a
template provide good practical flexibility of the discussed technique. In fact, because the

requirements on constant densities ©, and Ap are essential strictly just within a compartment,

we see the possibility to use observed density data without any modifications of above derived
expressions (47) — (50) or (82) — (85). Moreover, seismically observed Moho depth data can be
used also within each compartment.

Using the ETOPO1 digital terrain model (Fig. 3 and 4) we get two sets of the terrain
reductions, one based on topographic surface data, second one — on the combination of the ice
shield data and topography (Fig. 3—6 see at the color paste between pages 112 and 113).

From the Fig. 5 we can really fill how big the differences between the ice shield and
topography at the Antarctic continent.

As aresult two sets of the Fay anomaly were calculated. In the next step on the frame of well-
known remove-restore technic the EGM2008 global gravity model was removed from the resulted
sets of Fay anomalies. Using the sequential multipole analysis the residual gravity field was
approximated by the sets of multipoles of different degree and order. But this is a topic of another
paper.

With gridded data we can provide simple and effective interpolation of corresponding values
onto centers of a template compartments. Usually, regular height data are available in the form of
digital terrain models (DTM) with various resolutions. Much probably that data of other types are
not available as corresponding grids. In this case general prediction techniques should be applied
to irregular data for a grid creation. Next, we should note that choice of a template steps over
azimuth and spherical (or horizontal) distance seems as practically important problem.

Indeed, very small steps will produce essential computation time expenses whereas too large
steps will violate the conditions (45), (46) or (80), (81). In this view we should note that template
steps must be agreed with smallest size of used grids. In addition, it may be necessary to perform
grid densification in small vicinity of a computation point. It is obvious that application of the
spherical template lead to more consistent results.

Finally, we should note that some modification of classical mathematical template was
proposed by R.Forsberg (1984), who used division onto rectangular blocks in accordance with
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DTM structure. However, potentials of rectangular prism were derived in (Forsberg, 1984) only as
plane approximations of the potentials (4), (9). In addition, singularities may appear for some
positions of computation point regarding DTM nodes. With this respect we can conclude that the
technique based on rectangular prism potentials has not essential advantages in comparison with
the techniques based on classical mathematical templates.
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Fig. 5. Ice surface and topography along the track limited by 90S to 70S and 90W

Fig. 6. Terrain correction based on combination of ice surface and topography data (mGal)



