УКРАЇНСЬКИЙ АНТАРКТИЧНИЙ ЖУРНАЛ УАЖ, №3, 19-26, (2005)

УДК 550.386.36

ГЕОМАГНИТНЫЕ ВОЗМУЩЕНИЯ НА СТАНЦИИ АКАДЕМИК ВЕРНАДСКИЙ ВО ВРЕМЯ МАГНИТНЫХ ОБЛАКОВ В 1997г.

О.И. Максименко, Г.В. Мельник, Л.Н. Яременко, Т.А. Мозговая

Институт геофизики НАНУ, Киев-03680, пр. Палладина, 32, тогдоwa@igph.kiev.ua

Реферат. Проведено сравнение Dst-вариаций с изменениями параметров солнечного ветра CB и межпланетного магнитного поля ММП во время 9 магнитных бурь в 1997г для получения критериев геоэффективности магнитных облаков (МО), вызывающих бури и наблюдаемых на KA WIND. Найдена логарифмическая связь между значениями Dst_{min}<-40нТл и суммарной энергии поступившей в магнитосферу во время МО, имеющих плавные изменения ориентации вертикальной составляющей ММП при скоростях CB более 400км/с. Показано, что в американском секторе зависимость Dst_{min} вариаций от косинуса широты обсерватории не выполняется. Для объяснения высокоширотных аномалий с двойным положительным Dst_{min}, появившегося на дневной стороне Земли во время главной фазы магнитной бури 15 мая 1997 г., необходимо проводить моделирование пространственного распределения поля Dst-вариаций при учете всех его источников (кольцевой, хвостовой, продольные токи).

Геомагнітні збурення на станції Академік Вернадський під час магнітних хмар у 1997 р. О.І. Максименко, Г.В. Мельник, Л.М. Яременко, Т.О. Мозгова

Реферат. Проведено порівняння Dst-варіацій зі змінами параметрів сонячного вітру (СВ) та міжпланетного магнітного поля (ММП) під час 9 магнітних бур у 1997 р. для одержання критеріїв геоефективності магнітних хмар (МХ), спостережуваних на КА WIND, які викликають бурі. Знайдено логарифмічний зв'язок між значеннями Dst_{min}<-40нТл та сумарної енергії, що надійшла в магнітосферу під час МХ, у яких орієнтація вертикальної складової ММП плавно змінюється при швидкості СВ більшій 400 км/с. Показано, що в американському секторі залежність Dst_{min} варіацій від косинуса широти обсерваторії не виконується. Для пояснення високоширотних аномалій з подвійним додатним Dst_{min}, що з'явилося на денному боці Землі під час головної фази магнітної бурі 15 травня 1997 р., необхідно здійснювати моделювання просторового розподілу поля Dst-варіацій з урахуванням всіх його джерел (кільцевий, хвостовий, поздовжні струми).

Geomagnetic disturbances at Akademik Vernadsky during magnetic clouds by O.I. Maksymenko, G.V. Melnyk, L.N. Yaremenko, T.A. Mozgovaya

Abstract. The comparative studying of Dst-variations and temporal variations of solar wind (SW) and interplanetary magnetic field (IMF) parameters during the 9 magnetic disturbances in 1997 were carried out to define the geoeffective condition in the magnetic clouds (MC). The logarithm type relation between the Dst_{min} index and energy input into the magnetosphere were found during MC with a large rotation of the magnetic field vector and vast solar wind velocity (more 400 km/c). It was shown that the empirical dependence of Dst_{min} index variations upon the cosine of the observatory latitude breaks down for American sector and modelling of the Dst-variation field are indispensable for understanding the appearances of the 10 degrees located positive $\sim 2Dst_{min}$ anomaly on high latitudes during main phase of the great magnetic storm on May 15, 1997 on the dayside of the Earth.

Key words: magnetic storm, magnetic cloud, Dst variation

1. Введение.

В настоящее время открытым остается вопрос о пространственной локализации вклада энергии солнечного ветра в магнитосферу при прохождении орбиты Земли через магнитные облака (МО), созданные при инжекции корональных масс (СМЕ) Солнца. Проведенные ранее изучение Dst-вариаций по всему земному шару для отдельных больших магнитных бурь (Яременко, Мельник, 2003) выявили существование высокоширотных ($\phi \ge 60^\circ$) районов с положительными Dst(H) в главную фазу бури во время МО.

Расположение станции Академик Вернадский (Φ =54°) в районе между среднеширотной и субавроральной областями определяет сложную картину изменчивости характеристик наблюдаемых здесь геомагнитных возмущений, вызванных МО. Магнитное облако по принятой классификации (Farrugia et al., 1998) — структурное образование в солнечном ветре с

минимальной температурой протонов, большими магнитными полями (до 25нТл) и вращением направления вертикальной компоненты Вz ММП внутри облака. Впоследствии (Zang et al., 2004) было предложено дополнительное подразделение МО по структуре поля, характеру изменения ориентации Вz сначала на 4 типа: простые униполярные МО с северным N или южным S направлением Bz, бимодальные – (NS, SN), а затем и с комбинациями полей Bz в МО. Изучение геоэффективности поля каждой из частей МО, переходной области между ударной волной и областью облака, ведущего и аксиального полей внутри облака, а также последующего за МО поля было продолжено в (Huttunen, 2005) для магнитных бурь различной интенсивности на различных стадиях солнечного цикла. Согласно исследованиям, изложенным в (Zang et al., 2004) МО в половине случаев (1995-1998 гг.) сопровождались ударными волнами, и только для четверти событий МО было связано с импульсом динамического давления солнечного ветра. В то же время, согласно (Zang et al., 2004), 80% МО могли наблюдаться одновременно с магнитными бурями, но далеко не всегда они являются непосредственной причиной развития магнитной бури. Интересны полученные при этом данные о том, что комбинации больших магнитных полей переходной области и аксиальных полей МО приводят к развитию многоступенчатый главной фазы бури. Динамика пространственно-временного распределения высокоширотных крупномасштабных структур, границ областей конвекции и высыпаний, каспа, аврорального овала в зависимости от фазы развития магнитных бурь позволяет проследить связи между возмущениями в солнечной ветре и ММП, магнитосферными процессами и флуктуациями геомагнитного поля и их откликами в ионосферных параметрах.

В работе приводятся результаты изучения нескольких магнитных бурь, которые были вызваны магнитными облаками (МО) с плавным поворотом вертикальной компоненты В ММП от южного на северное направление в течение облака, и наблюдались в Антарктиде на станции Академик Вернадский в 1997 году.

2. Экспериментальные данные. Методика обработки и результаты наблюдений

Выбранный интервал 1997г относился к растущей фазе цикла активности Солнца с наблюдаемым в 4 раза большим количеством пришедших от Солнца магнитных облаков (МО): 16 против 4 в 1996г. В этот интервал МО наиболее удобны для проведения геомагнитных исследований вследствие их высокой геоэффективности и возможного наглядного контроля вариаций параметров СВ и ММП, осуществляемого с помощью КА WIND, POLAR и др.

Данные о дате, времени 9 MO, $Dst_{min}(eq)$ - планетарном, $Dst_{min}(AIA)$ - на ст. AIA (ϕ =64°S), $Dst_{min}(SJG)$ - на SJG (ϕ =18°N), максимальных значениях азимутального электрического поля E=VBz, нормированных значениях $Dst_{min}AIA$, AE* и Ap индексах, а также степени связи между Dst_{min} и sume (суммарной величине поступившей из магнитосферы энергии в течение MO), равной отношению [log $Dst_{min}(eq)$ /log sume], представлены в таблице.

Дата	Время	Dst(H) _{min} ,	Dst(H),	Dst(H),	VBz _{max} ,	Dst(AIA)/	Dst(AIA)/	AE*	Ap	logDst/
A	MO, UT	nT (eq)	nT(AIA)	nT(SJG)	mV/m	Dst(SJG)	Dst(eq)	10 ¹⁶ Дж		logE
10/11.01	04-01		-38	-56	7.00	0.68		441	33	0.49
10.02	03-18	-68	-32	-58	4.20	0.55	0.47	529	22	0.52
15/16.05	09-14	-115	-78	-125	11.00	0.62	0.68	665	57	0.50
15/16.07	06-01	-45	-24	-49	4.45	0.49	0.53	238	15	0.45
3/4.08	14-02	-49	-22	-48	5.58	0.45	0.45	181	21	0.47
01.10	16-23	-98	-62	-102	3.99	0.61	0.63	381	47	0.85
10/11.10	23-24	-130	-80	-115	4.34	0.69	0.62	324	30	0.56
7/8.11	15.8-15	-110	-85	-105	1.70	0.81	0.77	427	44	0.69
22/23.11	14-18	-108	-82	-100	7.30	0.82	0.76	576	59	0.48

Таблица. Характеристики МО и магнитных бурь в 1997г.

В течение почти всех MO в 1997г, вызванных выбросом корональных масс (СМЕ) Солнца, происходит смена знака Bz с отрицательного (как правило) в начале MO на

положительный внутри облака за исключением октябрьских случаев. Максимальных значений поле В достигло в мае (23нТл), зимой наблюдались значения 12-13нТл, а в равноденствие отмечены колебания 14нТл (07.11) и постоянный уровень 25нТл (22.11). Для октябрьских МО отмечался (по данным КА WIND) временной профиль с постоянным В или со слабым повышением к концу облака (10.10). Максимум поступления энергии в магнитосферу во время малых бурь наблюдался через 6 ч после начала 19-часового МО в утреннем секторе в июле, а днем, в августе, вдвое большая максимальная энергия отмечена в начале короткого 11-часового МО. Таким образом, геоэффективными параметрами СВ при МО, вызвавшими магнитные бури в год минимума солнечной активности (1997), являются следующие: скорость СВ - более 380 км/с (600км/с – для больших бурь), азимутальное поле – порядка и более 2мВ/м и поступившая энергия в магнитосферу во время МО (более 100ГВт), длительность интервала с южной компонентой ММП (Вz ~ -8нТл) более 6-8 часов.

Ниже будут проведены сопоставления Dst-вариаций при MO с профилем параметров CB и ММП, полученных на ИСЗ КА WIND и приведенных в Интернете (http://lepmfi.gsfc.nasa.gov/mfi/lacura/mfi-wplt/html). Гелиогеофизические условия, сопровождающие прохождение Земли через магнитные облака, оценивались по суточным значениям поступившей корпускулярной энергии на основе магнитометрических измерений (Сумарук и др., 2002) и Ар индексам.

3. Энергетические характеристики магнитных бурь

Интенсивность магнитной бури, характеризуемая Dst_{min}, в первом приближении изменяется по косинусу широты в интервале средних широт. Наблюдаемая асимметричность кольцевого тока со временем суток, а именно, изменения Dst_{min} с долготой, обусловленные, в основном, разной высотой протекания тока над поверхностью Земли днем и ночью, повидимому, не должны искажать широтный ход Dst в отдельных (Американском. Евроазиатском, Австралийском) меридиональных секторах. Однако, при развитии сильных возмущений, вследствие увеличения вклада в Dst-вариацию (особенно при Ф~60°) от полей других источников (токов в авроральной зоне, на магнитопаузе или в хвосте магнитосферы), ситуация усложняется. Поэтому, используя результаты моделирования наблюдаемых на данной станции Dst_{min}, нормированных на их низкоширотное (экваториальное) значение, которые получены для набора параметров СВ и ММП, отчасти можно оценить влияние вклада магнитосферных источников Dst-вариаций при разделении магнитных бурь по интенсивности. В этой связи обратим внимание на интересные результаты изучения магнитной бури 15 мая 1997г, представленные в работе (Яременко, Мельник, 2003). Авторы обнаружили появление положительного всплеска Dst_{min}= +(400-480)нТл вблизи полудня над Европой отрицательного пика такой же величины, но противоположного знака Dst =-(400-480) нТл в утренних и вечерних секторах. Выявленное в летнем полушарии локальное увеличение Dst_{min} c пиковым значением на $\phi = 67^{\circ}$, почти в 2,5 раза превышающим абсолютную величину значения экваториального Dst_{min} = -200нTл, занимало полосу широт ($\phi = 60^{\circ}$ - 70°), расположенную в полуденном секторе вблизи области каспа с шириной до 10°. Указанная высокоширотная аномалия широтного хода Dst_{min} по форме отличается для двух полушарий, возможно, вследствие дополнительного влияния продольных токов, через которые замыкается на ионосферу интенсивный ток из хвоста магнитосферы и, по-видимому, зависит от источников и интенсивности магнитной бури. При этом более изрезанный пространственный профиль аномалии противоположного по знаку всплеска Dst_{min} = -480 нТл наблюдался в утреннем секторе (8ч) над Северной Америкой. Отмечены так же предпосылки для появления подобного эффекта в Австралийском секторе в вечернее время суток (22ч).

На станции AIA для интенсивной магнитной бури 15 мая нормированная на экваториальные значения Dst_{min} величина составляла 0,63 (таблица), что больше косинуса ее широты. Для малых бурь 15 июля и 3 августа нормированные Dst_{min} несколько меньше, что отражает более быстрое широтное рассеяние поля кольцевого тока в дневном секторе зимней полусферы после большого импульса давления солнечного ветра 9 нРа впереди МО при

северной компоненте ММП. В предположении, что Dst_{min} при полном формировании кольцевого тока несет информацию о включении других магнитосферных источников вариаций магнитного поля кроме кольцевого тока в зависимости от интенсивности магнитной бури, можно провести моделирование экспериментальных широтных зависимостей Dst_{min} для определенных форм МО и фиксированных геоэффективных параметров ММП и солнечного ветра. Очевидно, что только при использовании результатов моделирования поля Dstвариаций, оценки величины нормированной характеристики Dst_{min} для двух (или более) станций (к примеру, AIA и экваториальной SJG), по-видимому, дадут сведения о появлении и возможном уровне вклада от различных магнитосферных источников возмущений магнитного поля в главную фазу бури при известной структуре МО.

Кроме Dst_{min} для энергетической характеристики возмущения во время МО были использованы геоэффективные параметры солнечного ветра. В частности, определена величина энергии, поступающей в магнитосферу в течение МО, грубо определяемая потоком Пойтинга, падающим на сечение магнитосферы во время МО, $\varepsilon = Vsw~B^2l^2~sin^4(\Psi/2)$ -, где l-эффективный размер фронта магнитосферы, Ψ -часовой угол ММП в GSM координатах. Выявлена логарифмическая связь в виде соотношения $log(Dstmin) \sim 0.5log(\Sigma \varepsilon \Delta t)$ для средней зависимости Dst_{min} от поступившей энергии ($\Sigma \varepsilon \Delta t$) за время МО для всех 9 МО 1997 г. Причем, для малых бурь ($Dst_{min} \sim 40$ нТ) коэффициент связи меньше 0,47. При этом максимальные всплески поступившей энергии достигали 57 Γ BT, что в примерно 5 раз больше, чем для малой бури.

В качестве другой интегральной характеристики корпускулярной энергии, входящей в магнитосферу при возмущении был использован суточный индекс AE*, введенный в (Сумарук и др., 2002). Для выяснения характера поступления энергии были построены распределения AE* с помощью метода наложения эпох для всех 9 МО, которые вывили заметное увеличение энергии в день регистрации МО и последующие за ним сутки, а также небольшое усиление спустя несколько дней после МО. Детальные исследования поведения AE* для каждого МО позволили определить рекуррентные источники возмущений. Наиболее мощное вторжение в 1997 г. проявилось при майском 16 часовом МО (665 10 16 Дж) с последующим постепенным в течение 3 суток ослаблением энергии. Оно вызвало сильную магнитную бурю 15 мая с планетарным Dst=-115 нТл в 13 UT. Зимний сезон характеризовался коротким однодневным максимумом энергии с длительными 19-часовым МО утром 15 июля и 11-часовым МО после полудня 3 августа. Большое поступление энергии отмечалось при 22-часовом утреннем МО 7 ноября и более длительном 33-часовом дневном МО 22 ноября. Обнаружено, что в равноденствие МО приходит на фоне постепенного поступления корпускулярной энергии в течение 3-х суток.

Ниже проведем сопоставления Dst-вариаций с профилем параметров среды и ММП в окрестности МО для изолированного МО 3 августа с малой магнитной бурей в дневном секторе и большой классической бурей 15/16 мая с МО (9-01) UT.

4. Магнитные бури и профиль МО

На рис.1 показаны сверху вниз: Dst-вариации на станциях AIA и SJG, профили Вz-составляющей ММП, азимутального поля на утро-вечернем меридиане VBz, динамического давления солнечного ветра Pdyn и скорости солнечного ветра Vsw во время малой магнитной бури 3-4 августа 1997 г. Вертикальными линиями отмечены границы магнитного облака. Выделенное во второй половине суток 14-25 UT 3 августа (Ap = 21, Kp = 32+) МО перемещалось от солнца в течение 110 час. Источником магнитных возмущений МО, которое сопровождалось выбросом корональных масс, отчасти могли быть зарегистрированные за 4 суток до него рентгеновские вспышки. Интересно, что такое изолированное МО с двух скачковым ростом Vsw = 380-430 км/с в зимний сезон вызвало малую магнитную бурю в Американском секторе с внезапным началом в 1042 UT, пиковым значением Dst = -49нТл в 14 UT, т.е. через 2 часа после максимальных значений Bz ММП. На AIA буря имела 5-часовую

главную фазу и 4-часовую положительную фазу с Dst = +28нTл в 14 ч. после 2-часового импульса давления с пиком 14,0 nPa , зарегистрированным перед передним краем MO.

Во время МО состояние ММП характеризовалось, по данным измерений на КА WIND, изменением знака Bz от южного в начале MO к северному направлению через 6 часов после начала MO и 2 часов после пика Dst на AIA. При этом был отмечен нарастающий профиль поля B до B = 15 нTл к концу MO (22ч). Энергия поступившего в магнитосферу потока достигла максимума с началом MO (ϵ = 18,8·10°W) и затем уменьшалась так же, как и величина азимутального поля конвекции с максимумом 3,5 мВ/м, отмеченным тоже в начале MO при потоке ионов порядка 35 см⁻³. Обратим внимание, что после MO тоже были замечены всплески

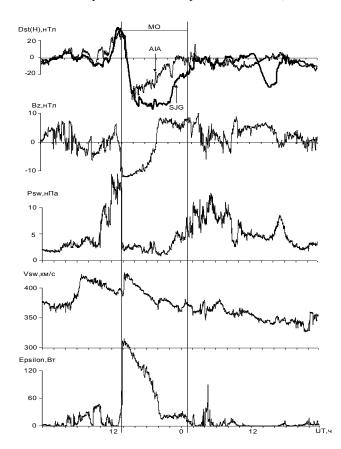


Рис. 1. Изменения параметров ММП и CB во время MO и магнитной бури 3/4августа.

потока ионов и колебания динамического давления СВ.

Как видно на рис.1, в начальную фазу магнитной бури отмеченный положительный пик Dst(H), по-видимому, обусловлен импульсом давления потока СВ до 12 нПа. Отношение пиковых значений Dst_{min} в главную фазу магнитной бури на двух станциях (экваториальной SJG и AIA) составило 0,46, что меньше, чем в большую магнитную майскую (0,6). Возможно, естественное ослабление поля при распаде кольцевого тока в дневном секторе зимнего полушария, которое наблюдалось и для другой малой магнитной бури 15 июля, вызванной более длительным 19-часовым МО, но с одинаковой величиной энергии СВ, запасенной в магнитосфере при отрицательных Вz во время облака другой топологии.

На магнитограммах станции Академик Вернадский (AIA) были обнаружены различные флуктуации: квазипериодические флуктуации с амплитудой 8нТл и периодом 20-30 мин на записи X и Y компонент и 2-часовые

колебания восточной Y-компоненты. Внезапное начало SC магнитной бури сопровождалось флуктуациями вектора эквивалентного тока северо-западного направления с амплитудой 12 нТл. Отмечены также изменения направления векторов тока суббурь в зависимости от времени их возникновения внутри МО. Подобная ситуация может быть следствием кратковременных процессов в переходной области между ударной волной и МО, где были зарегистрированы более длительные 2-часовые импульсы давления СВ (рис.1), Pdyn ~17нПа, высокоскоростные потоки, при столкновении с которыми возможно развитие нелинейных процессов, ускорение частиц. Привлечение данных ММП и СВ, полученных на нескольких. ИСЗ поможет выявлению пространственного распределения источников поля Dst-вариаций.

Магнитные возмущения в мае 1997 г. были вызваны двумя магнитными облаками, возникшими в результате СМЕ на Солнце: 15/16 мая 1997 г. (Ap = 56, Kp = 38+) 16-часовое МО (бимодальное SN) отмечалось с 9 по 01 UT, а 16 мая (Ap = 10, Kp = 18+) МО (NS-

"квазиоблако") было зарегистрировано с 7 по 14 UT. Они сопровождались наибольшим за год мощным вторжением корпускулярной энергии $AE^* = 665 \cdot 10^{16}$ Дж с последующим постепенным ослаблением энергии до среднего уровня в течение 3 суток. Сильная магнитная буря 15 мая с планетарным индексом Dst = -115нTл в 13UT развивалась к тому же на фоне рекуррентного возмущения.

На рис.2 показаны Dst вариации и данные KA WIND (обозначения те же, что и на рис.1) для магнитной бури 15-16 мая 1997. Магнитное облако (МО1) вызвало ударную волну, приведшую к внезапному началу магнитной бури и резкому скачку поля В от 7 нТл к 25 нТл, которое сохранилось в течение 6 часов. При этом концентрация ионов внутри МО1 снизилась до 5 см-3 после резкого спада динамического давления СВ на переднем крае облака. Особенностью этого МО1 являются противофазные импульсные изменения компонент ММП Bx = -(8-12) HTл, By = +20 HTл длительностью по 5 часов начиная непосредственно с SC. В переходной области между ударной волной и облаком были отмечены также большие вариации концентрации частиц от 20 до 45 см⁻³. Несмотря на бурные изменения в переходной области, магнитное облако характеризовалось плавным спадающим профилем поля В внутри облака после достижения его максимума 25 нТл в 10 UT, резким спадом динамического давления на переднем фронте облака от 12 нРа. При этом вертикальная компонента Вz ММП в течение MO1 (NS тип) плавно изменяла направление от южного в начале MO1 к северному в конце MO1, проходя через ноль на 5-й час после минимальных Dst в 12 UT. Указанные изменения среды и поля ММП с небольшим ростом потока частиц около 12 UT, по-видимому, определяют характер взаимодействий сопутствующих магнитно-ионосферных возмущений на Земле. Как видно на рис. 2, большая классическая магнитная буря с SC и пиком Dst_{min} = -78нТл на AIA в 12 UT и Dst_{min} = -125 нТл в американском секторе на низких широтах (SJG) имела 5часовую начальную фазу и главную фазу с 7 до 12UT с последующей восстановительной фазой вплоть до 1UT 16мая. На следующий день, 16 мая, развиваются новые возмущения с двумя суббурями в 8 и 12 UT. Наблюдаемый спад амплитуды пика Dst_{min} на AIA в 1,6 раз относительно низких широт (SJG) во время MO1, по-видимому, вызван присутствием дополнительного источника Dst-вариаций поля кроме кольцевого тока на широте AIA, который приводит к более быстрому изменению Dst. Следует обратить внимание также на появление различных флуктуаций Н компоненты в течение магнитной бури: квазипериодические колебания фона с Т = 40мин (-120 нТл) и 3 суббури, две положительные (+20нТл) в начальную фазу и отрицательная в главную фазу (-80 нТл) в 8:40 UT, и восстановительную фазу (-106 нТл) в 13:30 UT. К сожалению, замеченные изменения амплитуды и направления эквивалентных токов суббурь в зависимости от фазы магнитной бури и состояния ионосферной плазмы нельзя было сравнить с ионосферными эффектами вследствие разного режима магнитных и ионосферных наблюдений на AIA в этом интервале.

В нижней ионосфере наблюдались всплески степени турбулентности (foEs-fbEs)/fbEs) спорадического слоя в 6LT, 17LT и колоссальный всплеск (foEs-fbEs)/fbEs = 3 на следующий день после MO2, 16 мая, которые, возможно, являются откликом на солнечную вспышку в 17LT. Заметим, что в ионосфере AIA приход ударной волны сопровождался увеличением поглощения КВ и ростом экранирующей частоты fbEs. На краю МО при развитии суббури в верхней F области наблюдались интенсивные мелкомасштабные неоднородности в 8ч (утром 4:40LT), вызвавшие диффузность (F-рассеяние) и отклоняющее поглощение (R) отраженного от F2 слоя сигнала, которое сменилось полным поглощением (В) в нижней ионосфере во время 40-минутных колебаний X-компоненты с амплитудой 40 нТл. В конце МО опять усиливается полное поглощение В в ночь на 16 мая. Отдельно укажем на кратковременное возникновение высоких спорадических слоев hEs = 170 км в начале МО (8UT), после суббурь (14 UT) и на стадии восстановлении 18 UT. Не исключено, что такие действующие высоты слоя - результат отражений от наклонных фронтов ионизации в нижней ионосфере, как следствие перемещающихся волновых возмущений плотности или локального высыпания энергичных частиц.

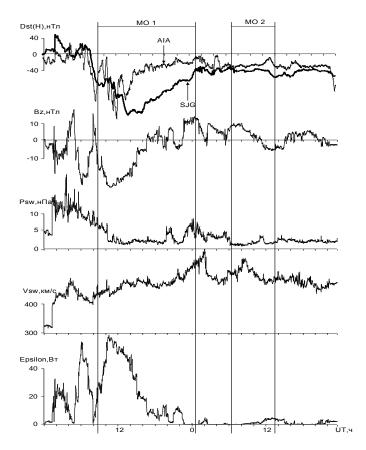


Рис. 2. Изменения параметров ММП и СВ во время МО и магнитной бури 15/16 мая.

В главную фазу этой бури на орбите Земли вне радиационных поясов были зарегистрированы на КА GEOS (LANL1991-080) (http:leadbelly.lanl.gov/GEM_storms/....html) изменения потока релятивистских электронов на порядок величины в диапазоне (0,7-1,8) МеВ с минимумом в 12 UT. В этой связи интересны имеющиеся сведения (Konekal et al., 1999) о появлении максимума потока релятивистских частиц на 6-7 сутки после девяти МО в 1997г с наибольшим градиентом потока на L>4 в майских измерениях на спутниках.

В мае, в предзимний период, два бимодальных МО сложной структуры поля вызвали большую магнитную бурю с SC в 02UT и несколькими интенсивными (80-120) нТл суббурями на AIA. Поэтапный сброс энергии в магнитосферу и квазипериодические 40-минутные колебания большой амплитуды Dst ~60 нТл в главную фазу магнитной бури на AIA определили сложный характер ионосферных возмущений на станции AIA. Уменьшение интенсивности бури Dst_{min} на широте AIA в 1,5 раза относительно экватора в американском секторе в 12 UT отражает дополнительное поступление энергии в магнитосферу подсолнечной области. Последующий рост концентрации нижней части ионосферы вызывает эффекты полного поглощения зондирующих ионосферу КВ-сигналов не только во время магнитной бури, но и после МО. Отметим, что экваториальная граница овала полярных сияний 15 мая для $\Phi = 56.5^{\circ}$ 0MLT достигала по данным измерений LANL (CEDAR) (//leadbelly.lanl.gov/GEM_storms/). Поэтому не удивительна отмеченная повышенная появляемость мелкомасштабных неоднородностей концентрации в верхнем F-слое (Fspread на ионограммах) во время суббурь и в главную фазу. Увеличение концентрации нижней ионосферы на краях магнитного облака затруднили количественные оценки магнитноионосферной связи. Однако, поиск постшторм-эффектов позволил выявить некоторую тенденцию в виде роста степени турбулентности спорадического слоя на 2, 5 и на 7 сутки после MO. Источник наблюдаемого положительного ионосферного возмущения $(\delta Dst(foF2) = +37\%)$ в F2 слое ионосферы на 7 сутки после MO возможно, находится тоже внутри магнитосферы.

5. Заключение

- 1. Показано, что для изучения источников аномалий пространственного распределения Dst_{\min} следует использовать данные спутникового мониторинга межпланетных параметров для комплекса «магнитное облако магнитная буря» и результаты моделирования поля Dst_{\max} вариаций при различных ситуациях в ММП и CB , и только затем, по отношению Dst_{\min} на меридиональных станциях (например, SJG и AIA), определять возможный источник поля вариаций Dst_{\min}
- 2. Получено, что интенсивность магнитных бурь с $Dst_{min} < (-40 hTл)$, которые вызывались MO, образованными при инжекции корональных масс Солнца в 1997г, связана с суммарным потоком поступившей в магнитосферу в течение MO энергии в соответствии с соотношением $log(Dst_{min}) \sim -0.5log(\Sigma \epsilon \cdot \Delta t)$.

Развитие малых (Dst \sim -50 нТл) магнитных бурь в 1997г было возможным при приближении к Земле магнитных облаков (MO) размером более 0,1AU и скоростью V \sim 400км/с, с магнитным полем B=14 нТл и с 2-часовым импульсом Pdyn \sim 13нПа перед MO и при длительных (6-8 часов) интервалах существования Bz \sim -8 нТл, VBz \sim 3-4 мВ/м.

3. Обнаружена повышенная нерегулярность ионосферы в районе AIA во время большой магнитной бури 15 мая, характеризующейся локальной (ϕ =60-70°) аномалией $Dst_{min} \sim 2Dst_{min}(eq)$ положительного знака на дневной стороне Земли. Ионосферная возмущенность определяется расположением станции вблизи экваториальной границы аврорального овала, наблюдаемого согласно (DMPS) в диапазоне Φ = 56,5-58° в 0MLT во время исследуемых магнитных бурь.

Литература

Сумарук П.В., Бахмутов В.Г., Мартазинова В.Ф., и др. Отчет о научноисследовательской работе по теме: «Исследование связи геомагнитного поля с климатом и долговременными изменениями окружающей среды» // ИГФ НАНУ №0198U000211, Киев. -2002. - 179 с.

Мельник Г.В., Яременко Л.Н. Геомагнитная вариация Dst в полярных широтах. // Сборник тезисов, Третья Украинская конференция по перспективным космическим исследованиям, Кацивели, Крым. -2003. - C. 115.

Farrugia C.J. et al., Geoeffectiveness of the Wind magnetic clouds.//J. Geoph. Res. - 1998. - V.103. - P. 17261-17270.

Huttunen K.E.J., Schwenn, Bothmer V., Koskinen H.E.J. Properties and geoeffectiveness of magnetic clouds in solar cycle 23. // Ann.Geoph. - 2005. - V.23. - P. 625-641.

Konekal S.G. et.al. Magnetospheric response to magnetic cloud (CME) events: Relativistic electron observations from SAMPEX and POLAR. // J.Geoph.Res. - 1999. - A11. - P. 24885-24896.

Zang et.al. Geoeffectiveness of magnetic clouds. // J.Geoph.Res. - 2004. - A9. - A09101.