Ukrainian Antarctic Journal

No 16 (2017): Ukrainian Antarctic Journal
Articles

Modelling of multi-scale processes of formation of bottom and shelf waters in the southern part of the Weddell Sea

V. Maderich
Institute of Mathematical Machines and Systems Problems, National Academy of Sciences of Ukraine, Kyiv
K. Terletska
Institute of Mathematical Machines and Systems Problems, National Academy of Sciences of Ukraine, Kyiv
I. Brovchenko
Institute of Mathematical Machines and Systems Problems, National Academy of Sciences of Ukraine, Kyiv
Published December 29, 2017
Keywords
  • Ronne-Filchner Іce shelf,
  • Filchner overflow,
  • Weddell Sea,
  • SCHISM model,
  • recirculation of ice shelf water
How to Cite
Maderich, V., Terletska, K., & Brovchenko, I. (2017). Modelling of multi-scale processes of formation of bottom and shelf waters in the southern part of the Weddell Sea. Ukrainian Antarctic Journal, (16), 45-51. https://doi.org/10.33275/1727-7485.16.2017.60

Abstract

The main objective of the study is numerical analysis of the influence of the bottom topography on the flow of waters transformed under the ice shelf of Ronne-Filchner (ice waters), on the shelf and continental slope in the Weddell Sea. The numerical methods were applied in modeling by mean of the SCHISM model with unstructured mesh. The simulation results showed that under the action of buoyancy forces, Coriolis and friction in the baroclinic ocean, the flow of water from the Ronne- Filchner glacier on the edge of the shelf and the continental slope is divided into three: one branch flows into the abyssal of the Weddell Sea, the other flows along the continental shelf, while the third, the largest part of the flow, turns to the shelf and fills the Ronne depression, returning under the Ronne-Filchner glacier. We conclude that recirculation of the ice waters can significantly affect the evaluation of bottom water production in the Weddell Sea.

References

  1. Maderich, V., Terletska, K., Brovchenko, I. 2010. Structure and dynamics of gravity currents on a slope: a flow of transformed under the Ronne-Filchner ice water in the Weddell Sea. Ukrainian Antarctic Journal, 9, 263-270.
  2. Daae, K., Hattermann, T., Darelius E., Fer I. 2017. On the effect of topography and wind on warm water inflow - An idealized study of the southern Weddell Sea continental shelf system. J. Geophys. Res. Oceans, 122, 2622-2641, https://doi.org/10.1002/2016JC012541.
  3. Darelius, E., Makinson, K. Daae, K., Fer, I., Holland, P. R., Nicholls, K. W. 2014. Hydrography and circulation in the Filchner Depression, Weddell Sea, Antarctica. J. Geophys. Res. Oceans, 119, 5797-5814, https://doi.org/10.1002/2014JC010225.
  4. Darelius, E., Fer, I., Nicholls, K. W. 2016. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nature Communications, 7, 12300, https://doi.org/10.1038/ncomms12300.
  5. Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V., Wisotzki, A. 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Marine Res., 53, 515-538. https://doi.org/10.1357/0022240953213089.
  6. Fer, I., Darelius, E. Daae, K. B. 2016. Observations of energetic turbulence on the Weddell Sea continental slope. Geophys. Res. Lett., 43, 760-766, https://doi.org/10.1002/2015GL067349.
  7. Foldvik, A., Gammelsrød, T., Østerhus, S., Fahrbach, E., Rohardt, M., Schröder, G., Nicholls, K. W., Padman L.,Woodgate R. A. 2004. Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 109, C02015, https://doi.org/10.1029/2003JC002008.
  8. GEBCO, 2014. The GEBCO_2014 Grid, version 20150318, www.gebco.net.
  9. Hasumi, H., Matsumura, Y. 2010. Modeling ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res. 115, C10033, https://doi.org/10.1029/2009JC005841.
  10. Huhn, O, Hellmer, H.H., Rhein, M., Rodehacke, C., Roether, W., Schodlok, M.P., Schröder, M. 2008. Evidence of deep- and bottom-water formation in the western Weddell Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 55(8-9), 1098-1116. https://doi.org/10.1016/j.dsr2.2007.12.015.
  11. Locarnini, R., Whitworth, III, A.T., Nowlin, W. D. Jr. 1993. The importance of the Scotia Sea on the outflow of Weddell Sea Deep Water. J. Marine Res., 51, 135-153. https://doi.org/10.1357/0022240933223846.
  12. Maderich, V., Terletska, K., Brovchenko, I. 2010. Structure and dynamics of gravity currents on a slope: a flow of transformed under the Ronne-Filchner ice water in the Weddell Sea. Ukrainian Antarctic Journal, 9, 263-270.
  13. Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., Fahrbach, E. 2009. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys, 47, RG3003, https://doi.org/10.1029/2007RG000250
  14. Orsi, A. H., Johnson, G. C., Bullister J. L. 1999. Circulation, mixing and production of Antarctic Bottom Water. Progress in Oceanography, 43, 55-109. https://doi.org/10.1016/S0079-6611(99)00004-X.
  15. Roland, A., Zhang Y.J., Wang, H.V., Meng, Y, Teng, Y.-C., Maderich, V., Brovchenko, I., Dutour-Sikiric, M., Zanke, U. 2012. A fully coupled 3D wave-current interaction model on unstructured grids, Journal of Geophysical Research, 117, C00J33, 1-18, https://doi.org/10.1029/2012JC007952.
  16. Talley, L. D. Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. In Clark, P. U., Webb, R. S., Keigwin, L. D. (eds). 1999. Mechanisms of global climate change at millenial time scales. Washington DC, American Geophysical Union, 1-22. https://doi.org/10.1029/GM112p0001.
  17. Wåhlin, A.K., Darelius, E., Cenedese, C., Lane-Serff, G.F. 2008. Laboratory observations of enhanced entrainment in dense overflows in the presence of submarine canyons and ridges. Deep-Sea Research Part I. 55, 737-750. https://doi.org/10.1016/j.dsr.2008.02.007.
  18. Wang, Q., Danilov, S., Schröter, J. 2008. Bottom water formation in the southern Weddell Sea and the influence of Submarine ridges: Idealized numerical simulations. Ocean Modelling, 28, 50-59. https://doi.org/10.1016/j.ocemod.2008.08.003.
  19. Wang, Q., Danilov, S., Fahrbach, E., Schröter, J., Jung, T. 2012. On the impact of wind forcing on the seasonal variability of Weddell Sea Bottom Water transport. Geophys. Res. Lett., 39, L06603, https://doi.org/10.1029/2012GL051198.
  20. Wilchinsky, A. V., Feltham, D. L. 2009. Numerical simulation of the Filchner overflow. J. Geophys. Res. 114, C12012, https://doi.org/10.1029/2008JC005013.
  21. Zhang, Y.J., Baptista, A.M. 2008. SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for crossscale ocean circulation. Ocean Modelling, 21, 71-96. https://doi.org/10.1016/j.ocemod.2007.11.005.
  22. Zhang, Y. J., Ateljevich, E., Yu H.-C., Wu, C.H., Yu, J.C.S. 2015. A new vertical coordinate system for a 3D unstructured-grid model. Ocean Modelling, 85, 16-31. https://doi.org/10.1016/j.ocemod.2014.10.003.
  23. Zhang Y. J., Stanev E.V., Grashorn S. 2016. Seamless cross-scale modelling with SCHISM. Ocean Modelling, 102, 64-81. https://doi.org/10.1016/j.ocemod.2016.05.002.