Ukrainian Antarctic Journal

No 2 (2020): Ukrainian Antarctic Journal
Articles

Microclimatic variations of land surface temperature on Galindez Island (western part of the Antarctic Peninsula)

M. Savenets
Ukrainian Hydrometeorological Institute, State Service of Emergencies of Ukraine and National Academy of Sciences of Ukraine, Kyiv, 03028, Ukraine
L. Pysarenko
Ukrainian Hydrometeorological Institute, State Service of Emergencies of Ukraine and National Academy of Sciences of Ukraine, Kyiv, 03028, Ukraine
D. Pishniak
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Published December 29, 2020
Keywords
  • Antarctica,
  • land surface temperature,
  • logger,
  • microclimate,
  • seasonality
How to Cite
Savenets, M., Pysarenko, L., & Pishniak, D. (2020). Microclimatic variations of land surface temperature on Galindez Island (western part of the Antarctic Peninsula). Ukrainian Antarctic Journal, (2), 3-15. https://doi.org/10.33275/1727-7485.2.2020.648

Abstract

The study presents analysis of microclimatic conditions on Galindez Island (western part of the Antarctic Peninsula), in particular: seasonal variability and spatial heterogeneity. Based on land surface temperature (LST) data derived from loggers and MicroClimate Monitoring Station, we analyzed areas with active growth of local plants. Seasonal variations formed mainly under annual and semi-annual cycles, with no dependencies of amplitudes and phases form area location. LST highly correlates with air temperature and total incoming irradiance. It is emphasized that spatial orientation of relief microforms plays the most significant role for LST formation on micro-level. Using cluster analysis, it was found that temperature loggers which are located along shoreline and oriented to the north–north-east could be grouped by similar LST distribution. 

References

  1. Barták, M., Láska, K., Hájek, J., & Váczi, P. (2019). Microclimate variability of Antarctic terrestrial ecosystems manipulated by open top chambers: Comparison of selected austral summer seasons within a decade. Czech Polar Reports, 9(1), 88–106. https://doi.org/10.5817/CPR2019-1-8
  2. Casanova-Katny, M. A., Palfner, G., Torres-Mellado, G. A., & Cavieres, L. A. (2014). Do Antarctic lichens modify microclimate and facilitate vascular plants in the maritime Antarctic? A comment to Molina-Montenegro et al. Journal of Vegetation Science, 25(2), 601–605. https://doi.org/10.1111/jvs.12122
  3. Chyhareva, A., Krakovska, S., & Pishniak, D. (2019a). Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part I: cold temperature indices. Ukrainian Antarctic Journal, 1(18), 62–74. https://doi.org/10.33275/1727-7485.1(18).2019.131
  4. Chyhareva, A., Krakovska, S., & Pishniak, D. (2019b). Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part II: wet/dry indices. Ukrainian Antarctic Journal, 2(19), 47–63. https://doi.org/10.33275/1727-7485.2(19).2019.151
  5. Convey, P. (2012). Chapter 5: Polar terrestrial environments. In E. M. Bell (Ed.), Life at Extremes: Environments, Organisms and Strategies for Survival (pp. 81–102). CAB International.
  6. Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., & Bergstrom, D. M. (2005). Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews Cambridge Philosophical Society, 80(1), 45–72. https://doi.org/10.1017/S1464793104006542
  7. Gallo, K., Hale, R., Tarpley, D., & Yu, Y. (2011). Evaluation of the Relationship between Air and Land Surface Temperature under Clear- and Cloudy-Sky Conditions. Journal of Applied Meteorology and Climatology, 50(3), 767–775. https://doi.org/10.1175/2010JAMC2460.1
  8. Hogg, I. D., Cary, S. C., Convey, P., Newsham, K. K., O’Donnell, A. G., Adams, B. J., Aislabie, J., Frati, F., Stevens, M. I., & Wall, D. H. (2006). Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor? Soil Biology & Biochemistry, 38(10), 3035–3040. https://doi.org/10.1016/j.soilbio.2006.04.026
  9. Klok, S. V. (2016). Analysis of the major formation dates and selected characteristics of the snow cover at the region of the Ukrainian Antarctic base Academic Vernadsky. Ukrainian Antarctic Journal, 15, 35–40. https://doi.org/10.33275/1727-7485.15.2016.90 (in Russian)
  10. Krakovska, S. V. & Pysarenko, L. A. (2017). Changes of the surface air temperature in the 20th — 21st centuries in the Antarctic Peninsula region based on climate models’ datа. Ukrainian Antarctic Journal, 16, 52–65. https://doi.org/10.33275/1727-7485.16.2017.62 (in Ukrainian)
  11. Kravchenko, V. O., Evtushevsky, O. M., & Milinevsky, G. P. (2010). Periodic variations of the winter warming rate in the Antarctic peninsula region. Naukovi pratsi UkrNDGMI, 259, 132–144. (in Ukrainian)
  12. Martazinova, V. & Tymofeyev, V. (2007). Interdecadal changes of tropospheric circulation in Southern extratropics during the recent warming in the Antarctic Peninsula. In A. Cooper, C. Raymond, and the 10th ISAES Editorial Team (Eds), Antarctica: A Keystone in a Changing World—Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences, EA 067.
  13. Meehl, G. A., van Loon, H., & Arblaster, J. M. (2017). The role of the Southern Hemisphere semiannual oscillation in the development of a precursor to central and Eastern Pacific Southern Oscillation warm events. Geophysical Research Letters, 44(13), 6959–6965. https://doi.org/10.1002/2017GL073832
  14. Molina-Montenegro, M. A., Ricote-Martínez, N., Muñoz-Ramírez, C., Gómez-González, S., Torres-Díaz, C., Salgado-Luarte, C., & Gianoli, E. (2013). Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in Maritime Antarctica. Journal of Vegetation Science, 24(3), 463–472. https://doi.org/10.1111/j.1654-1103.2012.01480.x
  15. Mutiibwa, D., Strachan, S., & Albright, T. (2015). Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4762–4774. https://doi.org/10.1109/JSTARS.2015.2468594
  16. Oliphant, A. J., Hindmarsh, R., Cullen, N., & Lawson, W. (2015). Microclimate and mass fluxes of debris-laden ice surfaces in Taylor Valley, Antarctica. Antarctic Science, 27(1), 85–100. https://doi.org/10.1017/S0954102014000534
  17. Parnikoza, I., Convey, P., Dykyy, I., Trokhymets, V., Milinevsky, G., Tyschenko, O., Inozemtseva, D., & Kozeretska, I. (2009). Current status of the Antarctic herb tundra formation in the central Argentine Islands. Global Change Biology, 15(7), 1685–1693. https://doi.org/10.1111/j.1365-2486.2009.01906.x
  18. Parnikoza, I. Yu., Miryuta, N. Yu., Ivanets, V. Yu., & Dykyi, E. O. (2018a). Determination of the united quality latent index of adaptability (UQLIA) and contribution of some environmental parameters to it for Deschampsia antarctica populations, Galindez Island (Maritime Antarctic) season 2017/2018. Visnik ukrains’kogo tovaristva genetikiv i selekcioneriv, 16(2), 190–202. https://doi.org/10.7124/visnyk.utgis.16.2.1057 (in Ukrainian)
  19. Parnikoza, I., Berezkina, A., Moiseyenko, Y., Malanchuk, V., & Kunakh, V. (2018b). Complex Survey of the Argentine Islands and Galindez Island (Maritime Antarctic) as a Research Area for Studying the Dynamics of Terrestrial Vegetation. Ukrainian Antarctic Journal, 1(17), 73–101. https://doi.org/10.33275/1727-7485.1(17).2018.34 (in Ukrainian)
  20. Sancho, L. G., Pintado, A., Navarro, F., Ramos, M., De Pablo, M. A., Blanquer, J. M., Raggio, J., Valladares, F., & Green, T. G. A. (2017). Recent Warming and Cooling in the Antarctic Peninsula Region has Rapid and Large Effects on Lichen Vegetation. Scientific Reports, 7, Article 5689. https://doi.org/10.1038/s41598-017-05989-4
  21. Savenets, M. V. (2019). Method of critical control of atmo spheric radiosounding data in the range of extreme deviations. Ukrainian Hydrometeorological Journal, 24, 23–32. https://doi.org/10.31481/uhmj.24.2019.02
  22. Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., & Deb, P. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411–415. https://doi.org/10.1038/nature18645
  23. Tymofeyev, V. E. (2007). Dynamics of modern warming in the region of Antarctic Peninsula. Naukovi pratsi UkrNDGMI, 256, 112–120. (in Russian)
  24. Tymofeyev, V. E., Beznoshchenko B. O., & Shcheglov, O. A. (2017). On the near-surface atmospheric circulation in the region of the Antarctic Peninsula. Ukrainian Antarctic Journal, 16, 66–80. https://doi.org/10.33275/1727-7485.16.2017.65 (in Russian)
  25. van Lipzig, N. P. M., van Meijgaard, E., & Oerlemans, J. (2002). The spatial and temporal variability of the surface mass balance in Antarctica: results from a regional atmospheric climate model. International Journal of Climatology, 22(10), 1197–1217. https://doi.org/10.1002/joc.798
  26. van Loon, H. (1967). The Half-Yearly Oscillations in Middle and High Southern Latitudes and the Coreless Winter. Journal of Atmospheric Sciences, 24(5), 472–486. https://doi.org/10.1175/1520-0469(1967)024%3C0472:THYOIM%3E2.0.CO;2
  27. Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, С., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., & Turner, J. (2003). Recent Rapid Regional Climate Warming on the Antarctic Peninsula. Climatic Change, 60, 243–274. https://doi.org/10.1023/A:1026021217991