Assessment of the zonal asymmetry trend in Antarctic total ozone column using TOMS measurements and CCMVal-2 models
- Antarctica,
- asymmetry,
- CCMVal-2,
- climate change,
- ozone
- stratosphere ...More
Copyright (c) 2020 Ukrainian Antarctic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
In the paper the seasonal trends in the zonal asymmetry in the quasi-stationary wave pattern of total ozone column (TOC) at southern polar latitudes have been investigated. We evaluated and compared seasonal trends in the zonal TOC asymmetry from modern era satellite measurements using the Total Ozone Mapping Spectrometer data and the second Chemistry Climate Model Validation (CCMVal-2) assessment. The model longitude phase shifts in asymmetry are in general consistent with the eastward phase shifts observed in historical period 1979–2005, however, there are underestimated values in individual seasons. Future trends in zonal asymmetry from the eleven CCMVal-2 models up to 2100 are presented. They demonstrate the appearance of reverse (westward) future phase shifts, mainly in austral summer. The results are in agreement with previous study and highlight that the general eastward/westward phase shift is caused by both greenhouse gases changes and ozone depletion/recovery. The greenhouse gases change drives a basic long-term eastward shift, which is enhanced (decelerates or reverses) in austral spring and summer by ozone depletion (recovery). The trends in the TOC asymmetry are forced by a general strengthening of the stratospheric zonal flow, which is interacting with the asymmetry of the Antarctic continent to displace the quasi-stationary wave-1 pattern and thus influences the TOC distribution. The results will be useful in prediction of seasonal anomalies in ozone hole and long-term changes in the local TOC trends, in ultraviolet radiation influence on the Southern Ocean biological productivity and in regional surface climate affected by the zonally asymmetric ozone hole.
References
- Agosta, E. A. & Canziani, P. O. (2011). Austral Spring Stratospheric and Tropospheric Circulation Interannual Variability. Journal of Climate, 24(11), 2629–2647. https://doi.org/10.1175/2010jcli3418.1
- Ashok, K., Behera, S. K., Rao, S. A., Weng, H., & Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112(C11), Article C11007. https://doi.org/10.1029/2006JC003798
- Bodeker, G. E. & Scourfield, M. W. J. (1995). Planetary waves in total ozone and their relation to Antarctic ozone depletion. Geophysical Research Letters, 22(21), 2949–2952. https://doi.org/10.1029/95GL01778
- Deppeler, S. L., & Davidson, A. T. (2017). Southern Ocean phytoplankton in a changing climate. Frontiers in Marine Science, 4, Article 40. https://doi.org/10.3389/fmars.2017.00040
- Domeisen, D. I. V., Garfinkel, C. I., & Butler, A. H. (2019). The teleconnection of El Niño Southern Oscillation to the stratosphere. Reviews of Geophysics, 57(1), 5–47. https://doi.org/10.1029/2018RG000596
- Evtushevsky, O. M., Grytsai, A. V., & Milinevsky, G. P. (2019). Decadal changes in the central tropical Pacific teleconnection to the Southern Hemisphere extratropics. Climate Dynamics, 52, 4027–4055. https://doi.org/10.1007/s00382-018-4354-5
- Eyring, V., Cionni, I., Bodeker, G. E., Charlton-Perez, A. J., Kinnison, D. E., Scinocca, J. F., Waugh, D. W., Akiyoshi, H., Bekki, S., Chipperfield, M. P., Dameris, M., Dhomse, S., Frith, S. M., Garny, N., Gettelman, A., Kubin, A., Langematz, U., Mancini, E., Marchand, M., ... & Yamashita, Y. (2010). Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 10, 9451–9472. https://doi.org/10.5194/acp-10-9451-2010
- Grytsai, A. V., Evtushevsky, O. M., Agapitov, O. V., Klekociuk, A. R., & Milinevsky, G. P. (2007). Structure and longterm change in the zonal asymmetry in Antarctic total ozone during spring. Annales Geophysicae, 25, 361–374. https://doi.org/10.5194/angeo-25-361-2007
- Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., & Stone, K. (2017). Evolution of the eastward shift in the quasistationary minimum of the Antarctic total ozone column. Atmospheric Chemistry and Physics, 17, 1741–1758. https://doi.org/10.5194/acp-17-1741-2017
- Hassler, B., Bodeker, G. E., Solomon, S., & Young, P. J. (2011). Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations. Geophysical Research Letters, 38(1), Article L01805. https://doi.org/10.1029/2010GL 045542
- Hobbs, W. R. & Raphael, M. N. (2007). A representative time-series for the Southern Hemisphere zonal wave 1. Geophysical Research Letters, 34(5), Article L05702. https://doi.org/10.1029/2006gl028740
- Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., & Kyrölä, E. (2012). Ozone zonal asymmetry and planetary wave characterization during Antarctic spring. Atmospheric Chemistry and Physics, 12, 2603–2614. https://doi.org/10.5194/acp12-2603-2012
- Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., & Grytsai, Z. I. (2012). Quasistationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone. Atmospheric Chemistry and Physics, 12(6), 2865–2879. https://doi.org/10.5194/acp-12-2865-2012
- Lin, P., Fu, Q., & Hartmann, D. L. (2012). Impact of tropical SST on stratospheric planetary waves in the Southern Hemisphere. Journal of Climate, 25(14), 5030–5046. https://doi.org/10.1175/JCLI-D-11-00378.1
- Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., & Ivaniha, O. (2020). Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. International Journal of Remote Sensing, 41(19), 7530–7540. https://doi.org/10.1080/2150704X.2020.1763497
- Morgenstern, O., Giorgetta M. A., Shibata, K., Eyring V., Waugh, D. W., Shepherd, T. G., Akiyoshi, H., Austin, J., Baumgaertner, A. J. G., Bekki, S., Braesicke, P., Brühl, C., Chipperfield, M. P., Cugnet, D., Dameris. M., Dhomse, S., Frith, S. M., Garny, H., Gettelman, A., … & Yamashita, Y. (2010). Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. Journal of Geophysical Research, 115(D3), Article D00M02. https://doi.org/10.1029/2009JD013728
- Moustaoui, M., Teitelbaum, H., & Valero, F. P. J. (2003). Vertical displacements induced by quasi-stationary waves in the Southern Hemisphere stratosphere during spring. Monthly Weather Review, 131(10), 2279–2289. https://doi.org/10.1175/1520-0493(2003)131<2279:VDIBQW>2.0.CO;2
- Siddaway, J. M., Petelina, S. V., Karoly, D. J., Klekociuk, A. R., & Dargaville, R. J. (2013). Evolution of Antarctic ozone in September–December predicted by CCMVal-2 model simulations for the 21st century. Atmospheric Chemistry and Physics, 13, 4413–4427. https://doi.org/10.5194/acp-13-4413-2013
- Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., & Karoly, D. J. (2011). Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 741–749. https://doi.org/10.1038/NGEO1296
- Turner, J., Hosking, J. S., Bracegirdle, T. J., Phillips, T. & Marshall, G. J. (2017). Variability and trends in the Southern Hemisphere high latitude, quasi-stationary planetary waves. International Journal of Climatology, 37(5), 2325–2336. https://doi.org/10.1002/joc.4848
- Quintanar, A. I. & Mechoso, C. R. (1995). Quasi-stationary waves in the Southern Hemisphere. Part I: observational data. Journal of Climate, 8(11), 2659–2672. https://doi.org/10.1175/1520-0442(1995)008<2659:QSWITS>2.0.CO;2
- Wirth, V. (1993). Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. Journal of Geophysical Research, 98(D5), 8873–8882. https://doi.org/10.1029/92JD02820
- Yang, C, Li, T, Dou, X, & Xue, X. (2015). Signal of central Pacific El Niño in the Southern Hemispheric stratosphere during austral spring. Journal of Geophysical Research: Atmospheres, 120(22), 11438–11450. https://doi.org/10.1002/2015JD023486