Ukrainian Antarctic Journal

Vol 20 No 2(25) (2022): Ukrainian Antarctic Journal
Articles

Studying the suspended matter in Antarctic Peninsula coastal waters to understand the local geological and ecological processes

Ye. Nasiedkin
Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
O. Olshtynska
Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
G. Ivanova
Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
O. Mytrofanova
State Scientific Institution Center for Problems of Marine Geology, Geoecology and Sedimentary Ore Formation of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
Published December 30, 2022
Keywords
  • Argentine Islands,
  • comprehensive research,
  • marine suspended matter,
  • monitoring,
  • sedimentary traps,
  • sedimentation
  • ...More
    Less
How to Cite
Nasiedkin, Y., Olshtynska, O., Ivanova, G., & Mytrofanova, O. (2022). Studying the suspended matter in Antarctic Peninsula coastal waters to understand the local geological and ecological processes. Ukrainian Antarctic Journal, 20(2(25), 135-150. https://doi.org/10.33275/1727-7485.2.2022.696

Abstract

We review comprehensive international studies of the mineral and organic suspended matter in the South Ocean. We suggest an experimental design to monitor these parameters at the Akademik Vernadsky station, where this research will be introduced. Applied aspects of marine suspension's qualitative and quantitative properties are a subject of active research, given its significance for several physical and biochemical processes such as sedimentation. Therefore, geological, biological, and climatological studies of the Antarctic shelf employ continuous observations of the suspension’s distribution. Work in this area is aimed at investigating the qualitative and quantitative properties of the suspension and analysis of its organic and mineral components, determining the dynamics of the currents and transportation of suspended matter, the nature of sedimentation processes, their seasonality and connection with the direction of currents and movement of sea ice. To determine the possibility of researching the suspended matter in the waters around the Akademik Vernadsky station, we analyze our long-term experience of using sedimentation traps to study the suspended matter flows in the seas and rivers of Ukraine. The developed complex of field equipment can be used to sample the suspended matter in waters adjacent to the Akademik Vernadsky station. The light single-cylinder sedimentation traps were transferred to the team of the Ukrainian Antarctic Expedition 2022 for further use at the Vernadsky station.

References

  1. Anadón, R., & Estrada, M. (2002). The FRUELA cruises. A carbon flux study in productive areas of the Antarctic Peninsula (December 1995 – February 1996). Deep-sea Research. Part II, Topical Studies in Oceanography, 49(4–5), 567–583. https://doi.org/10.1016/S0967-0645(01)00112-6
  2. Arrigo, K., van Dijken, G., & Bushinsky, S. (2008). Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research. Oceans, 113(C08). https://doi.org/10.1029/2007jc004551
  3. Balks, M., Paetzold, R., Kimble, J., Aislabie, J., & Campbell, I. (2002). Effects of hydrocarbons spills on the temperature and moisture regimes of Cryosols in the Ross Sea region. Antarctic Science, 14(4), 319–326.
  4. Belcher, A., Tarling, G., Manno, C., Atkinson, A., Ward, P., Skaret, G., Fielding, S., Henson, S., & Sanders, R. (2017). The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biology, 40(10), 2001–2013. https://doi.org/10.1007/s00300-017-2118-z
  5. Brewer, P., Bruland, K., Eppley, R., & Mc Carthy, J. (1986). The Global ocean flux study: status of the U.S. GOFS program. EOS. Science News of AGU, 67(44), 827–832.
  6. Chiarini, F., Ravaioli, M., & Capotondi, L. (2019). Interannual variability of vertical particle fluxes in the Ross Sea (Antarctica). Nature Conservation, 34, 417–440. https://natureconservation.pensoft.net/article/30732
  7. Collier, R., Dymond, J., Honjo, S., Manganini, S., Francois, R., & Dunbar, R. (2000). The vertical flux of biogenic and lithogenic material in the Ross Sea: Moored sediment trap observations 1996–1998. Deep-sea Research. Part II, Topical Studies in Oceanography, 47(15–16), 3491–3520. https://doi.org/10.1016/S0967-0645(00)00076-X
  8. Deprez, P., Arens, M., & Locher, H. (1999). Identification and assessment of contaminated sites at Casey station, Wilkes Land, Antarctica. Polar Record, 35(195), 299–316.
  9. Ducklow, H., Erickson, M., Kelly, J., Montes-Hugo, M., Ribic, C., Smith, R., Stammerjohn, S., & Karl, D. (2008). Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992–2007. Deep-sea Research. Part II, Topical Studies in Oceanography, 55(18–19), 2118–2131. https://doi.org/10.1016/j.dsr2.2008.04.028
  10. Ducklow, H., Wilson, S., Post, A., Stammerjohn, S., Erickson, M., Lee, S., Lowry, K., Sherrell, R., & Yager, P. (2015). Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elementa: Science of the Anthropocene, 3, 000046. https://doi.org/10.12952/journal.elementa.000046
  11. Dunbar, R., Leventer, A., & Mucciarone, D. (1998). Water column sediment fluxes in the Ross Sea, Antarctica: Atmospheric and sea ice forcing. Journal of Geophysical Research. Oceans, 103(C13), 30741–30759. https://doi.org/10.1029/1998JC900001
  12. Fischer, G., Gersonde, R., & Wefer, G. (2002). Organic carbon, biogenic silica and diatom fluxes in the marginal winter sea-ice zone and in the Polar Front Region: Interannual variations and differences in composition. Deep-sea Research. Part II, Topical Studies in Oceanography, 49(9–10), 1721–1745. https://doi.org/10.1016/S0967-0645(02)00009-7
  13. Forest, A., Tremblay, J., Gratton, Y., Martin, J., Gagnon, J., Darnis, G., Sampei, M., Fortier, L., Ardyna, M., Gosselin, M., Hattori, H., Nguyen, D., Maranger, R., Vaqué, D., Marrasé, C., Pedrós-Alió, C., Sallon, A., Michel, C., Kellogg, C., … & Piepenburg, D. (2011). Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): A synthesis of field measurements and inverse modeling analyses. Progress in Oceanography, 91(4), 410–436. https://doi.org/10.1016/j.pocean.2011.05.002
  14. Frignani, M., Langone, L., Labbrozzi, L., & Ravaioli, M. (2000). Biogeochemical processes in the Ross Sea (Antarctica): present knowledge and perspectives. In F. M. Faranda, L. Guglielmo, & A. Ianora (Eds), Ross Sea Ecology (pp. 39–50). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59607-0_4
  15. Honjo, S., Krishfield, R., Eglinton, T., Manganini, S., Kemp, J., Doherty, K., Hwang, J., McKee, T., & Takizawa, T. (2010). Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise. Progress in Oceanography, 85(3–4), 137–170. https://doi.org/10.1016/j.pocean.2010.02.009
  16. Kim, M., Yang, E. J., Kim, H. J., Kim, D., Kim, T.-W., La, H. S., Lee, S., & Hwang, J. (2019). Collection of large benthic invertebrates in sediment traps in the Amundsen Sea, Antarctica. Biogeosciences, 16(13), 2683–2691. https://doi.org/10.5194/bg-16-2683-2019
  17. Laws, E., Falkowski, P., Smith, W. O. Jr., Ducklow, H., & McCarthy, J. (2000). Temperature effects on export production in the open ocean. Global Biogeochemical Cycles, 14(4), 1231–1246. https://doi.org/10.1029/1999GB001229
  18. Liu, S., Xing, J., Westervelt, D. M., Liu, S., D. Ding, Fiore, A. M., Kinney, P. L., Zhang, Y., He, M. Z., Zhang, H., Sahu, S. K., Zhang, F., Zhao, B., & Wang, S. (2021). Role of emission controls in reducing the 2050 climate change penalty for PM2.5 in China. Science of the Total Environment, 765, 144338. https://doi.org/10.1016/j.scitotenv.2020.144338
  19. McDonnell, A. M. P., & Buesseler, K. O. (2010). Variability in the average sinking velocity of marine particles. Limnology and Oceanography, 55(5), 2085–2096. https://doi.org/10.4319/lo.2010.55.5.2085
  20. Mitropolsky, O., Nasedkin, E., Fedoseenkov, S., Ivanova, A., & Dovbysh, S. (2016). Recovery and adaption of the project of monitoring sedimentary processes on the Black sea shelf at the testing ground «Zaporizhzhia». Geology and Mineral Resources of World Ocean, 3, 89–94. (In Ukrainian)
  21. Nasedkin, E. (2013). Features in the distribution of copper in the composition of matter sedimentation on the Southern coast of Crimea. Hydroacoustic journal, 10, 127–138. (In Ukrainian)
  22. Nasedkin, Ye., & Ivanova, A. (2014). Monitoring sedimentacionnyh procesov v zone vzaimodejstvija sushi i morja [Monitoring of sedimentation processes in the zone of land-sea interaction]. In V. A. Ivanov, & V. A. Dulov (Eds.), Monitoring of the coastal zone in the Black Sea experimental sub-satellite testing area (pp. 490–503). (In Ukrainian)
  23. Nasiedkin, Ye., Osokina, N., Ivanova, G., & Kuznietsov, O. (2009). Sezonnyi rozpodil pestytsydiv v zavyslii rechovyni Chornoho moria [Seasonal distribution of pesticides in the suspended matter of the Black Sea]. Geology and Mineral Resources of World Ocean, 1, 80–86. (In Ukrainian)
  24. Nasiedkin, Ye., Mytropolskyi, O., & Ivanova, G. (2013). Monitorynh sedymentatsiinykh protsesiv u zoni vzaiemodii sukhodolu ta moria [Monitoring of sedimentation processes in the area of interaction between the land and the sea]. EKOSIHidrofizyka. (In Ukrainian)
  25. Nasedkin, Ye., Bondar, K., Tsyupa, I., Dovbysh, S., & Ivanova, G. (2019). Results of comprehensive ecological studies of sediment substance by geochemical and magnetic methods. Geological Journal, 3(367), 15–23. https://doi.org/10.30836/igs.1025-6814.2019.3.177967 (In Ukrainian)
  26. Nasedkin, Ye., Olshtynska, O., Ivanova, G., & Mytrofanova, O. (2022). Some features of iron distribution in the suspended matter of the Dnieper river within Zaporizhzhia city. Geochemistry of technogenesis, 7(35), 24–28. https://doi.org/10.32782/geotech2022.35.03
  27. Olshtynskaya, A., Nasedkin, Ye., & Ivanova, A. (2019). Preliminary results of investigations of diatoms (Bacillariophyta) from the water suspension of the Dnipro river within Zaporizhzhia city (Ukraine). International Journal on Algae, 21(2), 177–190. https://doi.org/10.1615/InterJAlgae.v21.i2.70
  28. Tymchenko, Yu., & Nasiedkin, Ye. (2012). Perspektyvy zastosuvannia metodiv diatomovoho analizu dlia monitorynhu vplyvu hidrometeorolohichnykh faktoriv na protsesy osadko nakopychennia [Prospects of using methods of diatom analysis to monitor the hydrometeorological factors’ effect on sedimentation processes]. Visnyk of Taras Shevchenko National University of Kyiv: Geology, 58, 4–10. (In Ukrainian) http://www.geolvisnyk.univ.kiev.ua/en/archive/2012/N58/tymchenko.pdf
  29. Riaux-Gobin, C., Dieckmann, G., Poulin, M., Neveux, J., Labrune, C., & Vétion, G. (2013). Environmental conditions, particle flux and sympagic microalgal succession in spring before the sea-ice break-up in Adélie Land, East Antarctica. Polar Research, 32, 19675. http://dx.doi.org/10.3402/polar.v32i0.19675
  30. Sampei, M., Sasaki, H., Forest, A., & Fortier, L. (2012). A substantial export flux of particulate organic carbon linked to sinking dead copepods during winter 2007–2008 in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean). Limnology and Oceanography, 57(1), 90–96. https://doi.org/10.4319/lo.2012.57.1.0090
  31. Schloss, I., Ferreyra, G. A., & Kowalke, J. (1999). Particle flux in an Antarctic shallow coastal environment: a sediment trap study. Scientia marina, 63(1), 99–111.
  32. Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., & Jouzel, J. (2005). Stable carbon cycle-climate relationship during the late Pleistocene. Science, 310(5752), 1313–1317. https://doi.org/10.1126/science.1120130
  33. Smith, W. O. Jr., & Nelson, D. M. (1986). The importance of ice edge phytoplankton blooms in the Southern ocean. Bio Science, 36(4), 251–257. https://doi.org/10.2307/1310215
  34. Wefer, G., Fisher, G., Fütterer, D. K., Gersonde, R., Honjo, S., & Ostermann, D. (1990). Particle sedimentation and productivity in Antarctic waters of the Atlantic sector. In: U. Beil, & J. Thiede (Eds.), Geological History of the Polar Oceans: Arctic Versus Antarctic (pp. 363–379). Kluwer Academic Publishers.
  35. Weston, K., Jickells, T., Carson, D., Clarke, A., Meredith, M., Brandon, M., Wallace, M., Ussher, S., & Hendry, K. (2013). Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux. Deep-sea Research. Part I, Oceanographic Research Papers, 75, 52–66. https://doi.org/10.1016/j.dsr.2013.02.001