Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part III: clouds and extreme precipitation
- climate change,
- condensed water path,
- ice water path,
- polar clouds,
- precipitation
Copyright (c) 2022 Ukrainian Antarctic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
This paper focuses on the parameters that represent the characteristics of clouds and extreme precipitation events over the Antarctic Peninsula region, where clouds and precipitation play a crucial role in regional climate warming, particularly when a higher fraction of precipitation becomes liquid. In this work, we assess cloud and precipitation properties under climate change over the Antarctic Peninsula region under the Representative Concentrations Pathways (RCP) scenarios using model outputs of the Coordinated Regional Downscaling Experiment for polar regions (Polar CORDEX) for the 21st century. A similar approach was previously applied by authors for estimating projected changes in the temperature regime (Part I) and wet/dry indices (Part II) for the Antarctic Peninsula. We evaluated changes in cloud ice and condensed water contents, spatial distributions of both rain fraction and 95th percentile of total precipitation for the future periods, 2041–2060 and 2081–2100, for RCP4.5, RCP8.5 comparing them to the historical period of 1986–2005. We found that changes in studied parameters have similar tendencies and patterns under both scenarios, with more remarkable changes for the RCP8.5 scenario through the end of the 21st century. Analysis of obtained projections shows that all cloud amounts, liquid content in clouds, the annual fraction of rain in precipitation events, and frequency of extreme precipitation events will increase over the Antarctic Peninsula by the end of the 21st century under both RCP scenarios. The most significant changes are expected for the west coast and over the ocean to the west of the Antarctic Peninsula region, while the lowest changes are projected for the ridge of the Antarctic Peninsula mountains. However, the rates of expected changes vary within the broad Antarctic Peninsula region. While extreme event intensities will increase over the whole area, the changes will be most remarkable over the northwestern slopes of the Antarctic Peninsula, where Akademik Vernadsky station is located.
References
- Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., & Pettersen, C. (2013). July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83–86. https://doi.org/10.1038/nature12002
- Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., & Webb, M. J. (2015). Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261–268. https://doi.org/10.1038/ngeo2398
- Bracegirdle, T. J., Krinner, G., Tonelli, M., Haumann, F. A., Naughten, K. A., Rackow, T., Roach, L. A., & Wainer, I. (2020). Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmospheric Science Letters, 21(9), e984. https://doi.org/10.1002/asl.984
- Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P., Lachlan-Cope, T., & van Lipzig, N. P. M. (2012). Tropospheric clouds in Antarctica. Reviews of Geophysics, 50(1), RG1004. https://doi.org/10.1029/2011RG000363
- Bromwich, D. H., Werner, K., Casati, B., Powers J. G., Gorodetskaya, I. V., Massonnet, F., Vitale, V., Heinrich, V. J., Liggett, D., Arndt, S., Barja, B., Bazile, E., Carpentier, S., Carrasco, J. F., Choi, T., Choi, Y., Colwell, S. R., Cordero, R. R., Gervasi, M., & Zou, X. (2020). The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bulletin of the American Meteorological Society, 101(10), E1653–E1676. https://doi.org/10.1175/BAMS-D-19-0255.1
- Chyhareva, A., Krakovska, S. & Pishniak, D. (2019a). Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part I: cold temperature indices. Ukrainian Antarctic Journal, 1(18), 62–74. https://doi.org/10.33275/1727-7485.1(18).2019.131
- Chyhareva, A., Krakovska, S. & Pishniak, D. (2019b). Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part II: wet/dry indices. Ukrainian Antarctic Journal, 2(19), 47–63. https://doi.org/10.33275/1727-7485.2(19).2019.151
- Chyhareva, A., Gorodetskaya, I., Krakovska, S., Pishniak, D. & Rowe, P. (2021). Precipitation phase transition in austral summer over the Antarctic Peninsula. Ukrainian Antarctic Journal, 1, 32–46. https://doi.org/10.33275/1727-7485.1.2021.664
- Gutiérrez, J. M., Jones, R. G., Narisma, G. T., Alves, L. M., Amjad, M., Gorodetskaya, I. V., Grose, M., Klutse, N. A. B., Krakovska, S., Li, J., Martínez-Castro, D., Mearns, L. O., Mernild, S. H., Ngo-Duc, T., van den Hurk, B., & Yoon, J.-H. (2021). Atlas. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, Y. Chen, L. Goldfarb, M. I. Gomis, J. B. R. Matthews, S. Berger, M. Huang, O. Yelekçi, R. Yu, B. Zhou, E. Lonnoy, T. K. Maycock, T. Waterfield, K. Leitzell, & N. Caud (Eds.), Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1927–2058. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/chapter/atlas/
- Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., & Taylor, K. E. (2017). A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1). Geoscientific Model Development, 10, 4619–4646. https://doi.org/10.5194/gmd-10-4619-2017
- Heymsfield, A. J., Matrosov, S., & Baum, B. (2003). Ice Water Path–Optical Depth Relationships for Cirrus and Deep Stratiform Ice Cloud Layers. Journal of Applied Meteorology, 42(10), 1369–1390. https://doi.org/10.1175/1520-0450(2003)042<1369:IWPDRF>2.0.CO;2
- Lachlan-Cope, T., Listowski, C., & O’Shea, S. (2016). The microphysics of clouds over the Antarctic Peninsula – Part 1: Observations. Atmospheric Chemistry and Physics, 16(24), 15605–15617. https://doi.org/10.5194/acp-16-15605-2016
- Lee, H., Johnston, N., Nieradzik, L., Orr, A., Mottram, R. H., van de Berg, W. J., & Mooney, P.A. (2022). Toward Effective Collaborations between Regional Climate Modeling and Impacts-Relevant Modeling Studies in Polar Regions. Bulletin of the American Meteorological Society, 103(8), E1866-E1874. https://doi.org/10.1175/BAMS-D-22-0102.1
- Lenaerts, J. T. M., Van Tricht, K., Lhermitte, S., & L’Ecuyer, T. S. (2017). Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophysical Research Letters, 44(7), 3355–3364. https://doi.org/10.1002/2016GL072242
- Li, D. (2022). Physical processes and feedbacks obscuring the future of the Antarctic Ice Sheet. Geosystems and Geoenvironment, 1(4), 100084. https://doi.org/10.1016/j.geogeo.2022.100084
- Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope, T., & King, J. (2019). Antarctic clouds, super cooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations. Atmospheric Chemistry and Physics, 19(10), 6771–6808. https://doi.org/10.5194/acp-19-6771-2019
- Lubin, D., Bromwich, D. H., Vogelmann, A. M., Verlinde, J., & Russell, L. M. (2017). ARM West Antarctic Radiation Experiment (AWARE) Field Campaign Report. United States. https://www.osti.gov/servlets/purl/1389616
- Mahesh, A., Campbell, J. R., & Spinhirne, J. D. (2005). Multi-year measurements of cloud base heights at South Pole by lidar. Geophysical Research Letters, 32(9), L09812. https://doi.org/10.1029/2004GL021983
- McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J., Alexander, S., Roberts, G. C., Twohy, C. H., Toohey, D., Siems, S., Huang, Y., Wood, R., Rauber, R. M., Lasher-Trapp, S., Jensen, J., Stith, J. L., Mace, J., Um, J., Järvinen, E., … & McDonald, A. (2021). Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bulletin of the American Meteorological Society, 102(4), E894–E928 https://doi.org/10.1175/BAMS-D-20-0132.1
- Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., & L’Ecuyer, T. (2017). Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 48, 225–239. https://doi.org/10.1007/s00382-016-3071-1
- Platt, C. M. R. (1997). A parameterization of the visible extinction coefficient of ice clouds in terms of the ice/water content. Journal of the Atmospheric Sciences, 54(16), 2083–2098. https://doi.org/10.1175/1520-0469(1997)054<2083:APOTVE>2.0.CO;2
- Platt, C. M. R., & Harshvardhan. (1988). Temperature dependence of cirrus extinction: Implications for climate feedback. Journal of Geophysical Research: Atmospheres, 93(D9), 11051–11058. https://doi.org/10.1029/JD093iD09p11051
- Pӧrtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., & Weyer, N. M. (Eds.) (2019). IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf
- Roussel, M.-L., Lemonnier, F., Genthon, C., & Krinner, G. (2020). Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against Cloud Sat observations. The Cryosphere, 14(8), 2715–2727. https://doi.org/10.5194/tc-14-2715-2020
- Shiobara, M., Yabuki, M., & Kobayashi, H. (2003). A polar cloud analysis based on Micro-pulse Lidar measurements at Ny-Ålesund, Svalbard and Syowa, Antarctica. Physics and Chemistry of the Earth, Parts A/B/C, 28(28–32), 1205–1212. https://doi.org/10.1016/j.pce.2003.08.057
- Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., Downie, R., Edwards, T., Hubbard, B., Marshall, G., Rogelj, J., Rumble, J., Stroeve, J., & Vaughan, D. (2019). The Antarctic Peninsula Under a 1.5 °C Global Warming Scenario. Frontiers in Environmental Science, 7, 102. https://doi.org/10.3389/fenvs.2019.00102
- Silber, I., Verlinde, J., Eloranta, E. W., & Cadeddu, M. (2018). Antarctic cloud macrophysical, thermodynamic phase, and atmospheric inversion coupling properties at McMurdo Station: I. Principal data processing and climatology. Journal of Geophysical Research: Atmospheres, 123(11), 6099–6121. https://doi.org/10.1029/2018JD028279
- Smith, R. C., Ainley, D., Baker, K., Domack, E., Emslie, S., Fraser, B., Kennett, J., Leventer, A., Mosley-Thompson, E., Stammerjohn, S., & Vernet, M. (1999). Marine Ecosystem Sensitivity to Climate Change: Historical observations and paleoecological records reveal ecological transitions in the Antarctic Peninsula region. BioScience, 49(5), 393–404. https://doi.org/10.2307/1313632
- Souverijns, N., Gossart, A., Demuzere, M., Lenaerts, J. T. M., Medley, B., Gorodetskaya, I. V., Vanden Broucke, S., & van Lipzig, N. P. M. (2019). A New Regional Climate Model for POLAR-CORDEX: Evaluation of a 30-Year Hindcast with COSMO-CLM2 Over Antarctica. Journal of Geophysical Research: Atmospheres, 124(3), 1405–1427. https://doi.org/10.1029/2018JD028862
- Stephens, G. L. (1980). Radiative properties of cirrus clouds in the infrared region. Journal of Atmospheric Sciences, 37(2), 435–446. https://doi.org/10.1175/1520-0469(1980)037<0435:RPOCCI>2.0.CO;2
- Trivelpiece, W. Z., Hinke, J. T., Miller, A. K., Reiss, C. S., Trivelpiece, S. G., & Watters, G.M. (2011). Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy of Science of the United States of America, 108(18), 7625–7628. https://doi.org/10.1073/pnas.1016560108
- Turton, J. V., Kirchgaessner, A., Ross, A. N., & King, J. C. (2018). The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf, Antarctica. Quarterly Journal of the Royal Meteorological Society, 144(713), 1169–1178. https://doi.org/10.1002/qj.3284
- Van Tricht, K., Lhermitte, S., Lenaerts, J. T. M., Gorodetskaya, I. V., L’Ecuyer, T. S., Noël, B., van den Broeke, M. R., Turner, D. D., & van Lipzig, N. P. M. (2016). Clouds enhance Greenland ice sheet meltwater runoff. Nature Communications, 7, 10266. https://doi.org/10.1038/ncomms10266
- Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C., & Berne, A. (2021). Present and future of rainfall in Antarctica. Geophysical Research Letters, 48(8), e2020GL092281. https://doi.org/10.1029/2020GL092281
- Wille, J. D., Favier, V., Jourdain, N. C., Kittel, C., Turton, J. V., Agosta, C., Gorodetskaya, I. V., Picard, G., Codron, F., Santos, C. L. D., Amory, C., Fettweis, X., Blanchet, J., Jomelli, V., & Berchet, A. (2022). Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Communications Earth and Environment, 3, 90. https://doi.org/10.1038/s43247-022-00422-9
- Winker, D. M., Pelon, J., Coakley Jr., J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., Le Treut, H., Mccormick, M. P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., & Wielicki, B. A. (2010). The CALIPSO Mission. Bulletin of the American Meteorological Society, 91(9), 1211–1230. https://doi.org/10.1175/2010BAMS3009.1