Ukrainian Antarctic Journal

Vol 20 No 2(25) (2022): Ukrainian Antarctic Journal
Articles

Lagrangian pathways under the Filchner-Ronne Ice Shelf and in the Weddell Sea

V. Maderich
Institute of Mathematical Machine and System Problems of NAS of Ukraine, Kyiv, 03187, Ukraine
R. Bezhenar
Institute of Mathematical Machine and System Problems of NAS of Ukraine, Kyiv, 03187, Ukraine
I. Brovchenko
Institute of Mathematical Machine and System Problems of NAS of Ukraine, Kyiv, 03187, Ukraine
A. Bezhenar
Institute of Mathematical Machine and System Problems of NAS of Ukraine, Kyiv, 03187, Ukraine
F. Boeira Dias
Institute for Atmospheric and Earth System Research, Physics, Faculty of Science, University of Helsinki, 00100, Finland
P. Uotila
Institute for Atmospheric and Earth System Research, Physics, Faculty of Science, University of Helsinki, 00100, Finland
Published December 30, 2022
Keywords
  • Filchner-Ronne Ice Shelf,
  • High Salinity Shelf Water,
  • Parcels model,
  • particle trajectories,
  • Weddell Sea,
  • Whole Antarctica Ocean Model
  • ...More
    Less
How to Cite
Maderich, V., Bezhenar, R., Brovchenko, I., Bezhenar, A., Boeira Dias, F., & Uotila, P. (2022). Lagrangian pathways under the Filchner-Ronne Ice Shelf and in the Weddell Sea. Ukrainian Antarctic Journal, 20(2(25), 203-211. https://doi.org/10.33275/1727-7485.2.2022.700

Abstract

The study’s objective is to construct Lagrangian pathways under the Filchner-Ronne Ice Shelf (FRIS) and in the Weddell Sea using the data of numerical simulation of currents and Lagrangian numerical methods. The results of modeling the circulation, temperature, and salinity in the Weddell Sea and the FRIS cavity from the Whole Antarctica Ocean Model were used to run the particle-tracking model (Parcels) for computing Lagrangian particle trajectories. The basic version of the Parcels model does not have an option for particle reflection from the solid boundaries, including the ice shelf. Therefore, the corresponding kernel was used in the study. To avoid errors in interpolation near the solid boundary when the model algorithm cannot find enough grid nodes around the particle, the function of particle recovery was implemented. To analyze the movement variations of the water masses under the FRIS, a set of particles was released in the Ronne Depression near the ice shelf front. Simulation continued for 20 years of particle movement. Particles were released at two depths: 350 m and 500 m, every 4 hr within the first 365 days. To characterize the redistribution of water masses, we calculated the ‘visitation frequency’, i.e., the percentage of the particles that visited each 2 × 2 km grid column at least once in a modeling period. The mean age of visits was
also calculated to characterize the age of water masses. The results of this analysis generally agreed with schemes based on water mass analysis. The released particles first move southward along the Ronne Trough. The flow then turns to the east, reaching the passage between Berkner Island and Henry Ice Rise after three years. After ten years, the released particles reach the Filchner Trough, through which water flows out to the shelf of the southern part of the Weddell Sea. Over time, the particles penetrate all parts of the cavity. The particles also cross the Ronne Shelf front and are carried away by currents on the Weddell Sea shelf. In
20 years, almost the same number of particles left the cavity through the Ronne ice front (43%) and the Filchner ice front (37%), whereas the rest of the particles (20%) remained under FRIS.

References

  1. Csanady, G. T. (1983). Dispersal by randomly varying currents. Journal of Fluid Mechanics, 132, 375–394. https://doi.org.10.1017/S0022112083001664
  2. Delandmeter, P., & van Sebille, E. (2019). The Parcels v2.0 Lagrangian framework: new field interpolation schemes. Geoscientific Model Development, 12(8), 3571–3584. https://doi.org/10.5194/gmd-12-3571-2019
  3. Drake, H. F., Morrison, A. K., Griffies, S. M., Sarmiento, J. L., Weijer, W., & Gray, A. R. (2018). Lagrangian timescales of Southern Ocean upwelling in a hierarchy of model resolutions. Geophysical Research Letters, 45(2), 891–898. https://doi.org/10.1002/2017gl076045
  4. Foldvik, A., Gammelsrød, T., Nygaard, E., & Østerhus, V. (2001). Current measurements near Ronne Ice Shelf: Implications for circulation and melting. Journal of Geophysical Research: Oceans, 106(C3), 4463–4477. https://doi.org/10.1029/2000JC000217
  5. Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sültenfuss, J., Østerhus, S., Stulic, L., Ryan, S., Schröder, M., & Kanzow, T. (2021). FRIS revisited in 2018: On the circulation and water masses at the Filchner and Ronne ice shelves in the southern Weddell Sea. Journal of Geophysical Research: Oceans, 126(6), e2021JC017269. https://doi.org/10.1029/2021JC017269
  6. Jenkins, A., Holland, D. M., Nicholls, K. W., Schröder, M., & Østerhus, S. (2004). Seasonal ventilation of the cavity beneath Filchner-Ronne Ice Shelf simulated with an isopycnic coordinate ocean model. Journal of Geophysical Research: Oceans, 109(C1), C01024. https://doi.org/10.1029/2001JC001086
  7. Nicholls, K. W., Østerhus, S., Makinson, K. & Johnson, M. R. (2001). Oceanographic conditions south of Berkner Island, beneath Filchner-Ronne Ice Shelf, Antarctica. Journal of Geophysical Research: Oceans, 106(C6), 11,481–11,492. https://doi.org/10.1029/2000JC000350
  8. Nicholls, K. W., Padman, L., Schröder, M., Woodgate, R. A., Jenkins, A., & Østerhus, S. (2003). Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica. Journal of Geophysical Research: Oceans, 108(C8), 3260. https://doi.org/10.1029/2002JC001713
  9. Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., & Fahrbach, E. (2009). Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Reviews of Geophysics, 47(3), RG3003. https://doi.org/10.1029/2007RG000250
  10. Richter, O., Gwyther, D. E., Galton-Fenzi, B. K., & Naughten, K. A. (2022). The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation. Geoscientific Model Development, 15(2), 617–647. https://doi.org/10.5194/gmd-15-617-2022
  11. Tamsitt, V., Drake, H. F., Morrison, A. K., Talley, L. D., Dufour, C. O., Gray, A. R., Griffies, S. M., Mazloff, M. R., Sarmiento, J. L., Wang, J., & Weijer, W. (2017). Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nature Communications, 8, 172. https://doi.org/10.1038/s41467-017-00197-0
  12. van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., ... & Zika, J. D. (2018). Lagrangian ocean analysis: fundamentals and practices. Ocean Modelling, 121, 49–75. https://doi.org/10.1016/j.ocemod.2017.11.008
  13. Vaňková, I., & Nicholls, K. W. (2022). Ocean variability beneath the Filchner-Ronne Ice Shelf inferred from basal melt rate time series. Journal of Geophysical Research: Oceans, 127(10), e2022JC018879. https://doi.org/10.1029/2022JC018879
  14. Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H. H., Jokat, W., Jullion, L., Mazloff, M., Bakker, D. C. E., Brearley, J. A., Croot, P., Hattermann, T., Hauck, J., Hillenbrand, C.-D., Hoppe, C. J. M., Huhn, O., Koch, B. P., Lechtenfeld, O. J., ... & Verdy, A. (2019). The Weddell Gyre, Southern Ocean: Present knowledge and future challenges. Reviews of Geophysics, 57(3), 623–708. https://doi.org./10.1029/2018RG000604