Ukrainian Antarctic Journal

Vol 21 No 2(27) (2023): Ukrainian Antarctic Journal
Articles

Abiotic pathways for the formation of ozone-depleting and other trace gases in the polythermal glacier on Galindez Island, Maritime Antarctica

M. Bazylevska
Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
V. Bogillo
Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
Spectrograms of the signal emitted from Vernadsky and received onboard RV Noosfera after reflection from the ionosphere, the black line shows the X component of the geomagnetic field measured at the Vernadsky AIA station. See paper Zalizovski et al. 2024 (page 195). Photo by S. Glotov and from the archive of the SI NASC
Published December 31, 2023
Keywords
  • firn,
  • halocarbons,
  • hydrocarbons,
  • S-containing peptides,
  • snowpack,
  • superimposed ice
  • ...More
    Less
How to Cite
Bazylevska, M., & Bogillo, V. (2023). Abiotic pathways for the formation of ozone-depleting and other trace gases in the polythermal glacier on Galindez Island, Maritime Antarctica. Ukrainian Antarctic Journal, 21(2(27), 150-174. https://doi.org/10.33275/1727-7485.2.2023.715

Abstract

The study aims to analyze trace gases in the composition of the polythermal glacier on Galindez Island in Maritime Antarctica (65°14' S, 64°16' W) and possible pathways for their abiotic formation in the snowpack and the superimposed or old cold ice. Polythermal glaciers are the most sensitive indicators of climate change. They are ideal for studying chemical post-depositional processes that alter the trace gas composition of the ice core air and the mechanisms involved under the current climate warming. This study is the first attempt to assess the concentration range of a large number of trace gases (except the previously studied O2, N2, Ar, and CO2) in polythermal and temperate glaciers, which are widespread in Greenland, Svalbard, Canadian Arctic, Alaska, Alps, Andes, Tibet, Altai, and Maritime Antarctica. The ice porosity varies from 0.6% to (unique to superimposed ice) 7%. Qualitative analysis by GC-MS was done for more than 200 organic and inorganic trace gases. A quantitative analysis of 27 compounds was performed along the vertical profile of the glacier, including CO2 and N2O, freons, chlorine-based solvents that are prohibited by the Montreal Protocol, F-, Cl-, Br- and I-containing halocarbons, COS, CS2, CH3SCH3, CH3SSCH3, and propene. Statistical data (mean, minimal, and maximum values) for ten horizontal levels of the glacier were calculated for their mixing ratios compared to background air. Most halocarbons, sulfur-containing compounds, and propene are characterized by high enrichment factors. This suggests that the species can be formed in the snowpack and firn of the glacier or its deep bubbling superimposed and old cold ice. Possible pathways of the gases formation include direct and indirect photochemical reactions of the triplet state dissolved organic matter (DOM) in snowpack without or in the presence of X– ions (X = Cl, Br, I), dark redox reactions of Fe3+, Mn4+, Cu2+, O3, H2O2 or radicals HOx (HOx = HO·,HO2·) with DOM in the presence of X–, reactions of HOX with DOM (with the participation of HOx, H2O2 or O3), free radical reactions with alkenes, alkynes, and alkyl radicals, and miscellaneous reactions of methylmethionine and/or S-containing peptides.

References

  1. Abrahamsson, K., Granfors, A., Ahnoff, M., Cuevas, C. A., & Saiz-Lopez, A. (2018). Organic bromine compounds produced in sea ice in Antarctic winter. Nature Communications, 9, 5291. https://doi.org/10.1038/s41467-018-07062-8
  2. Alder, B., Geiss, J., Groegler, N., & Renaud, A. (1969). Gas composition in ice samples collected by E. G. I. G. in Greenland. In A. Renaud (Ed.), Etudes physiques et chimiques sur la glace de l’inlandsis du Groenland 1959. Meddelelser om Groenland, 177(2), 100–107.
  3. Allard, S., & Gallard, H. (2013). Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study. Science of the Total Environment, 463–464, 169–175. https://doi.org/10.1016/j.scitotenv.2013.05.079
  4. Allard, S., Gallard, H., Fontaine, C., & Croué, J-P. (2010). Formation of methyl iodide on a natural manganese oxide. Water Research, 44(15), 4623–4629. https://doi.org/10.1016/j.watres.2010.06.008
  5. Atkinson, H. M., Huang, R.-J., Chance, R., Roscoe, H. K., Hughes, C., Davison, B., Schönhardt, A., Mahajan, A. S., Saiz-Lopez, A., Hoffmann, T., & Liss, P. S. (2012). Iodine emissions from the sea ice of the Weddell Sea. Atmospheric Chemistry and Physics, 12(22), 11229–11244. https://doi.org/10.5194/acp-12-11229-2012
  6. Aydin, M., Williams, M. B., Tatum, C., & Saltzman, E. S. (2008). Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record. Atmospheric Chemistry and Physics, 8, 7533–7542. https://doi.org/10.5194/acp-8-7533-2008
  7. Bazylevska, M. S., & Bogillo, V. I. (2003). Description of air/surface partitioning for volatile organic pollutants in Antarctic environment. In S. Barany (Ed.), Role of interfaces in environmental protection (pp. 153–160). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0183-0_11
  8. Berresheim, H. (1987). Biogenic sulfur emissions from the Subantarctic and Antarctic oceans. Journal of Geophysical Research: Atmospheres, 92(D11), 13245–13262. https://doi.org/10.1029/JD092iD11p13245
  9. Berresheim, H., Huey, J. W., Thorn, R. P., Eisele, F. L., Tanner, D. J., & Jefferson, A. (1998). Measurements of dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctica. Journal of Geophysical Research: Atmospheres, 103(D1), 1629–1637. https://doi.org/10.1029/97JD00695
  10. Bogillo, V. I., Bazylevska, M. S., & Borchers, R. (2003). Past and future for ozone-depleting halocarbons in Antarctic environment. In S. Barany (Ed.), Role of interfaces in environmental protection (pp. 161–168). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0183-0_12
  11. Bonsang, B., Aarbaoui, A. A., & Sciare, J. (2008). Diurnal variation of non-methane hydrocarbons in the subantarctic atmosphere. Environmental Chemistry, 5, 16–23. https://doi.org/10.1071/EN07018
  12. Brook, E. J., Sowers, T., & Orchardo, J. (1996). Rapid variations in atmospheric methane concentration during the past 110,000 years. Science, 273(5278), 1087–1091. https://doi.org/10.1126/science.273.5278.1087
  13. Brüggemann, M., Hayeck, N., Bonnineau, C., Pesce, S., Alpert, P. A., Perrier, S., Zuth, C., Hoffmann, T., Chen, J., & George, C. (2017). Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds. Faraday Discussions, 200, 59–74. https://doi.org/10.1039/C7FD00022G
  14. Butler, J. H., Battle, M., Bender, M. L., Montzka, S. A., Clarke, A. D., Saltzman, E. S., Sucher, C. M., Severinghaus, J. P., & Elkins, J. W. (1999). A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature, 399, 749–755. https://doi.org/10.1038/21586
  15. Canonica, S., Jans, U., Stemmler, K., & Hoigne, J. (1995). Transformation kinetics of phenols in water: photosensitization by dissolved natural organic material and aromatic ketones. Environmental Science & Technology, 29(7), 1822–1831. https://doi.org/10.1021/es00007a020
  16. Carpenter, L. J., & Nightingale, P. D. (2015). Chemistry and release of gases from the surface ocean. Chemical Reviews, 115(10), 4015–4034. https://doi.org/10.1021/cr5007123
  17. Carpenter, L. J., Hopkins, J. R., Jones, C. E., Lewis, A. C., Parthipan, R., Wevill, D. J., Poissant, L., Pilote, M., & Constant, P. (2005). Abiotic source of reactive organic halogens in the sub-arctic atmosphere? Environmental Science and Technology, 39, 8812–8816. https://doi.org/10.1021/es050918w
  18. Chapman, W. L., & Walsh, J. E. (2007). A synthesis of Antarctic temperatures. Journal of Climate, 20(16), 4096–4117. https://doi.org/10.1175/JCLI4236.1
  19. Chen, J. L., Wilson, C. R., Blankenship, D., & Tapley, B. D. (2009). Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geoscience, 2, 859–862. https://doi.org/10.1038/ngeo694
  20. Cisak, J., Milinevsky, G., Danylevsky, V., Glotov, V., Chizhevsky, V., Kovalenok, S., Olijnyk, A., & Zanimonskiy, Y. (2008). Atmospheric impact on GNSS observations, sea level change investigations and GPS-photogrammetry ice cap survey at Vernadsky Station in Antarctic Peninsula. In A. Carpa, & R. Dietrich (Eds.), Geodetic and geophysical observations in Antarctica (pp. 191–209). Springer.
  21. Ciuraru, R., Fine, L., Pinxteren, M. van, D’Anna, B., Herrmann, H., & George, C. (2015). Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface. Scientific Reports, 5, 12741. https://doi.org/10.1038/srep12741
  22. Clark, C. D., & Zika, R. G. (2000). Marine Organic Photochemistry: From the Sea Surface to Marine Aerosols. In P. J. Wangersky (Ed.), Marine Chemistry; The Handbook of Environmental Chemistry (pp. 1–33). Springer, Berlin, Heidelberg. https://doi.org/10.1007/10683826_1
  23. Coachman, L. K., Hemmingsen, E., & Scholander, P. F. (1956). Gas enclosures in a temperate glacier. Tellus A: Dynamic Meteorology and Oceanography, 8(4), 415–423. https://doi.org/10.3402/tellusa.v8i4.9042
  24. Cobb, A. W., & Gross, G. W. (1969). Interfacial electrical effects observed during the freezing of dilute electrolytes in water. Journal of The Electrochemical Society, 116(6), 796–804. https://doi.org/10.1149/1.2412054
  25. Cook, A. J., Fox, A. J., Vaughan, D. G., & Ferrigno, J. G. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721), 541–544. https://doi.org/10.1125/science.1104235
  26. Davis, R. E. (1991). Links between snowpack physics and snowpack chemistry. In T. D. Davies, M. Tranter, & H. G. Jones (Eds.), Seasonal Snowpacks: Processes of compositional change (Vol. 28, pp. 115–138). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-75112-7_5
  27. Domine, F., Albert, M., Huthwelker, T., Jacobi, H. -W., Kokhanovsky, A. A., Lehning, M., Picard, G., & Simpson, W. R. (2008). Snow physics as relevant to snow photochemistry. Atmospheric Chemistry and Physics, 8, 171–208. https://doi.org/10.5194/acp-8-171-2008
  28. DeFelice, T. P. (1998). Chemical composition of fresh snowfalls at Palmer station, Antarctica. Atmospheric Environment, 33(1), 155–161. https://doi.org/10.1016/S1352-2310(98)80003-4
  29. de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C., Schulz, M., & Schwartz, S. E. (2011). Production flux of sea spray aerosol. Reviews of Geophysics, 49(2), 1–39. https://doi.org/10.1029/2010RG000349
  30. Du, J., Kim, K., Min, D. W., & Choi, W. (2022). Freeze-thaw cycle-enhanced transformation of iodide to organoiodine compounds in the presence of natural organic matter and Fe(III). Environmental Science and Technology, 56(2), 1007–1016. https://doi.org/10.1021/acs.est.1c06747
  31. Edwards, R., & Sedwick, P. (2001). Iron in East Antarctic snow: implications for atmospheric iron deposition and algal production in Antarctic waters. Geophysical Research Letters, 28(20), 3907–3910. https://doi.org/10.1029/2001GL012867
  32. Emanuelsson, B. D., Thomas, E. R., Tetzner, D. R., Hum by, J. D., & Vladimirova, D. O. (2022). Ice core chronologies from the Antarctic Peninsula: the Palmer, Jurassic, and Rendezvous age-scales. Geosciences, 12(2), 87. https://doi.org/10.3390/geosciences12020087
  33. Fischer, R., Weller, R., Jacobi, H.-W., & Ballschmiter, K. (2002). Levels and pattern of volatile organic nitrates and halocarbons in the air at Neumayer Station (70 °S), Antarctic. Chemosphere, 48(9), 981–992. https://doi.org/10.1016/S0045-6535(02)00110-8
  34. Fleming, W. L. S. (1940). Relic glacial forms of the western seaboard of Graham Land. The Geographical Journal, 96(2), 93–100. https://doi.org/10.2307/1787738
  35. Flöck, O., & Andreae, M. O. (1996). Photochemical and non-photochemical formation and destruction of carbonyl sulfide and methyl mercaptan in ocean waters. Marine Chemistry, 54(1–2), 11–26. https://doi.org/10.1016/0304-4203(96)00027-8
  36. Fowler, A. C., & Larson, D. A. (1978). On the flow of polythermal glaciers – 1. Model and preliminary analysis. Proceedings of the Royal Society A: mathematical, physical and engineering sciences, 363(1713), 217–242. https://doi.org/10.1098/rspa.1978.0165
  37. Frieß, U., Wagner, T., Pundt, I., Pfeilsticker, K., & Platt, U. (2001). Spectroscopic measurements of tropospheric iodine oxide at Neumayer Station, Antarctica. Geophysical Research Letters, 28(10), 1941–1944. https://doi.org/10.1029/2000GL012784
  38. Fu, H., Ciuraru, R., Dupart, Y., Passananti, M., Tinel, L., Rossignol, S., Perrier, S., Donaldson, D. J., Chen, J., & George, C. (2015). Photosensitized production of atmospherically reactive organic compounds at the air/aqueous interface. Journal of the American Chemical Society, 137(26), 8348–8351. https://doi.org/10.1021/jacs.5b04051
  39. Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E...., & Zhu, T. (2007). An overview of snow photochemistry: evidence, mechanisms and impacts. Atmospheric Chemistry and Physics, 7, 4329–4373. https://doi.org/10.5194/acp-7-4329-2007
  40. Grant N. H., & Alburn H. E. (1967) Reactions in frozen systems: VI. Ice as a possible model for biological structured-water systems. Archives of Biochemistry and Biophysics, 118(2), 292–296. https://doi.org/10.1016/0003-9861(67)90351-7
  41. Hao, Z., Yin, Y., Wang, J., Cao, D., & Liu, J. (2018). Formation of organobromine and organoiodine compounds by engineered TiO2 nanoparticle-induced photohalogenation of dissolved organic matter in environmental waters. Science of the Total Environment, 631–632, 158–168. https://doi.org/10.1016/j.scitotenv.2018.03.027
  42. Herrmann, H., Majdik, Z., Ervens, B., & Weise, D. (2003). Halogen production from aqueous tropospheric particles. Chemosphere, 52(2), 485–502. https://doi.org/10.1016/S0045-6535(03)00202-9
  43. Heumann, K. G., Gall, M., & Weiss, H. (1987). Geochemical investigations to explain iodine-overabundances in Antarctic meteorites. Geochimica et Cosmochimica Acta, 51(9), 2541–2547. https://doi.org/10.1016/0016-7037(87)90304-8
  44. Jacobi, H.-W., Bales, R. C., Honrath, R. E., Peterson, M. C., Dibb, J. E., Swanson, A. L., & Albert, M. R. (2004). Reactive trace gases measured in the interstitial air of surface snow at Summit, Greenland. Atmospheric Environment, 38(12), 1687–1697. https://doi.org/10.1016/j.atmosenv.2004.01.004
  45. Jammoul, A., Dumas, S., D’Anna, B., & George, C. (2009). Photoinduced oxidation of sea salt halides by aromatic ketones: a source of halogenated radicals. Atmospheric Chemistry and Physics, 9(13), 4229–4237. https://doi.org/10.5194/acp-9-4229-2009
  46. Jaworowski, Z. (1994). Ancient Atmosphere – Validity of ice records. Environment Science and Pollution Research, 1(3), 161–171. https://doi.org/10.1007/BF02986939
  47. Jeong, D., Kim, K., & Choi, W. (2012). Accelerated dissolution of iron oxides in ice. Atmospheric Chemistry and Physics, 12(22), 11125–11133. https://doi.org/10.5194/acp-12-11125-2012
  48. Jiao, Y., Zhang, W., Kim, J. Y. R., Deventer, M. J., Vollering, J., & Rhew, R. C. (2022). Application of copper (II)-based chemicals induces CH3Br and CH3Cl emissions from soil and seawater. Nature Communications, 13(47), 1–8. https://doi.org/10.1038/s41467-021-27779-3
  49. Karušs, J., Lamsters, K., Chernov, A., Krievāns, M., & Ješkins, J. (2019). Subglacial topography and thickness of ice caps on the Argentine Islands. Antarctic Science, 31(6), 332–344. https://doi.org/10.1017/S09541020190 00452
  50. Kaur, R., & Anastasio, C. (2018). First measurements of organic triplet excited states in atmospheric waters. Environmental Science and Technology, 52(9), 5218–5226. https://doi.org/10.1021/acs.est.7b06699
  51. Keppler, F., Borchers, R., Hamilton, J. T. G., Kilian, G., Pracht, J., & Schöler, H. F. (2006). De novo formation of chloroethyne in soil. Environmental Science and Technology, 40(1), 130–134. https://doi.org/10.1021/es0513279
  52. Keppler, F., Borchers, R., Elsner, P., Fahimi, I., Pracht, J., & Schöler, H. F. (2003). Formation of volatile iodinated alkanes in soil: results from laboratory studies. Chemosphere, 52(2), 477–483. https://doi.org/10.1016/S0045-6535(03)00198-X
  53. Keppler, F., Borchers, R., Pracht, J., Rheinberger, S., & Schöler, H. (2002). Natural formation of vinyl chloride in the terrestrial environment. Environmental Science and Technology, 36, 2479– 2483. https://doi.org/10.1021/es015611l
  54. Keppler, F., Eiden, R., Niedan, V., Pracht, J., & Schöler, H. F. (2000). Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature, 403, 298–301. https://doi.org/10.1038/35002055
  55. Khalil, M. A. K. (1999). Reactive chlorine compounds in the atmosphere. In P. Fabian, & O. N. Singh (Eds.), Reactive halogen compounds in the atmosphere (pp. 45–79). Springer, Berlin, Heidelberg. https://doi.org/10.1007/10628761_2
  56. Kim, K., Menacherry, S. P. M., Kim, J., Chung, H. Y., Jeong, D., Saiz-Lopez, A., & Choi, W. (2019). Simultaneous and synergic production of bioavailable iron and reactive iodine species in ice. Environmental Science and Technology, 53(13), 7355–7362. https://doi.org/10.1021/acs.est.8b06659
  57. King, A. C. F., Thomas, E. R., Pedro, J. B., Markle, B., Potocki, M., Jackson, S. L., Wolff, E., & Kalberer, M. (2019). Organic compounds in a sub-Antarctic ice core: a potential suite of sea ice markers. Geophysical Research Letters, 46(16), 9930–9939. https://doi.org/10.1029/2019GL084249
  58. Koerner, R. M., & Fisher, D. A. (1990). A record of Holocene summer climate from a Canadian high-Arctic ice core. Nature, 343(6259), 630–631. https://doi.org/10.1038/343630a0
  59. Kos, G., Kanthasami, V., Adechina, N., & Ariya, P. A. (2014). Volatile organic compounds in Arctic snow: Concentrations and implications for atmospheric processes. Environmental Science: Processes & Impacts, 16(11), 2592–2603. https://doi.org/10.1039/C4EM00410H
  60. Langenfelds, R. L., Fraser, P. J., Francey, R. J., Steele, L. P., Porter, L. W., & Allison, C. E. (1996). The Cape Grim air archive: The first 17 years, 1978–1995. In R. J. Francey, A. L. Dick, & N. Derek (Eds.), Baseline Atmospheric Program (Australia) 1994–95 (pp. 53–70). Bureau of Meteorology and CSIRO Division of Atmospheric Research.
  61. Lennartz, S. T., Marandino, C. A., von Hobe, M., Andreae, M. O., Aranami, K., Atlas, E., Berkelhammer, M., Bingemer, H., Booge, D., Cutter, G., Cortes, P., Kremser, S., Law, C. S., Marriner, A., Simo, R., Quack, B., Uher, G., Xie, H., & Xu, X. (2020). Marine carbonyl sulfide (OCS) and carbon disulfide (CS2): a compilation of measurements in seawater and the marine boundary layer. Earth System Science Data, 12(1), 591–609. https://doi.org/10.5194/essd-12-591-2020
  62. Lewis, A. C., Carpenter, L. J., & Pilling, M. J. (2001). Nonmethane hydrocarbons in Southern Ocean boundary layer air. Journal of Geophysical Research: Atmospheres, 106(D5), 4987–4994. https://doi.org/10.1029/2000jd900634
  63. Liss, P. S., & Duce, R. A. (Eds.) (1997). The Sea Surface and Global Change. Cambridge University Press. https://doi.org/10.1017/CBO9780511525025
  64. Liu, H., Tong, T., Pu, Y., Sun, B., Zhu, X., & Yan, Z. (2020a). Insight into the formation paths of methyl bromide from syringic acid in aqueous bromide solutions under simulated sunlight irradiation. International Journal of Environmental Research and Public Health, 17(6), 2081. https://doi.org/10.3390/ijerph17062081
  65. Liu, H., Pu, Y., Tong T., Zhu, X., Sun, B., & Zhang, X. (2020b). Photochemical generation of methyl chloride from humic acid: Impacts of precursor concentration, solution pH, solution salinity and ferric ion. International Journal of Environmental Research and Public Health, 17(2), 503. https://doi.org/10.3390/ijerph17020503
  66. Low, J. C., Wang, N. Y., Williams, J., & Cicerone, R. J. (2003). Measurements of ambient atmospheric C2H5Cl and other ethyl and methyl halides at coastal California sites and over the Pacific Ocean. Journal of Geophysical Research: Atmospheres, 108(D19), 4608. https://doi.org/10.1029/2003JD003620
  67. Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., & Stocker, T. F. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–382. https://doi.org/10.1038/nature06949
  68. Maffezzoli, N., Spolaor, A., Barbante, C., Bertò, M., Frezzotti, M., & Vallelonga, P. (2017). Bromine, iodine and sodium in surface snow along the 2013 Talos Dome–GV7 traverse (northern Victoria Land, East Antarctica). The Cryosphere, 11(2), 693–705. https://doi.org/10.5194/tc-11-693-2017
  69. Marchenko, S. A., van Pelt, W. J. J., Pettersson, R., Pohjola, V. A., & Reijmer, C. H. (2021). Water content of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements. Journal of Glaciology, 67(265), 921–932. https://doi.org/10.1017/jog.2021.43
  70. Martino, M., Mills, G. P., Woeltjen, J., & Liss, P. S. (2009). A new source of volatile organoiodine compounds in surface seawater. Geophysical Research Letters, 36(1), L01609. https://doi.org/10.1029/2008GL036334
  71. McNeill, K., & Canonica, S. (2016). Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties. Environmental Science: Processes & Impacts, 18(11), 1381–1399. https://doi.org/10.1039/C6EM00408C
  72. Méndez-Díaz, J. D., Shimabuku, K. K., Ma, J., Enumah, Z. O., Pignatello, J. J., Mitch, W. A., & Dodd, M. C. (2014). Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environmental Science & Technology, 48(13), 7418–7427. https://doi.org/10.1021/es5016668
  73. Montzka, S. A., Aydin, M., Battle, M., Butler, J. H., Saltzman, E. S., Hall, B. D., Clarke, A. D., Mondeel, D., & Elkins, J. W. (2004). A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice. Journal of Geophysical Research: Atmospheres, 109(D22), D22302. https://doi.org/10.1029/2004JD004686
  74. Mulder, I., Krause, T., Sattler, T., Tubbesing, C., Studenroth S., Bukowski, K., Atlas, E., & Schöler, H. F. (2015). Thermolytic degradation of methylmethionine and implications for its role in DMS and MeCl formation in hypersaline environments. Environmental Chemistry, 12(4), 415–425. http://dx.doi.org/10.1071/EN14207
  75. Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Lee, A. K. Y., Thomas, J. L., Blais, M., Gosselin, M., Miller, L. A., Papakyriakou, T., Willis, M. D., & Liggio, J. (2017). Microlayer source of oxygenated volatile organic compounds in the summertime marine arctic boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6203–6208. https://doi.org/10.1073/pnas.1620571114
  76. Nowak, A., Hodson, A., & Turchyn, A. V. (2018). Spatial and temporal dynamics of dissolved organic carbon, chlorophyll, nutrients, and trace metals in maritime Antarctic snow and snowmelt. Frontiers in Earth Science, 6, 201. https://doi.org/10.3389/feart.2018.00201
  77. O’Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hämeri, K., Pirjola, L., Kulmala, M., Jennings, S. G., & Hoffmann, T. (2002). Marine aerosol formation from biogenic iodine emissions. Nature, 417, 632–636. https://doi.org/10.1038/nature00775
  78. Park, S.-C., Moon, E.-S., & Kang, H. (2010). Some fundamental properties and reactions of ice surfaces at low temperatures. Physical Chemistry Chemical Physics, 12(38), 12000–12011. https://doi.org/10.1039/c003592k
  79. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., & Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 426–436. https://doi.org/10.1038/20859
  80. Pettersson, R., Jansson, P., & Blatter, H. (2004). Spatial variability in water content at the cold-temperate transition surface of the polythermal Storglaciären, Sweden. Journal of Geophysical Research: Earth Surface, 109(F2), F02009. https://doi.org/10.1029/2003JF000110
  81. Ratte, M., Bujok, O., Spitzy, A., & Rudolph, J. (1998). Photochemical alkene formation in seawater from dissolved organic carbon: Results from laboratory experiments. Journal of Geophysical Research: Atmospheres, 103(D5). 5707–5717. https://doi.org/10.1029/97JD03473
  82. Read, K. A., Lewis, A. C., Bauguitte, S., Rankin, A. M., Salmon, R. A., Wolff, E. W., Saiz-Lopez, A., Bloss, W. J., Heard, D. E., Lee, J. D., & Plane, J. M. C. (2008). DMS and MSA measurements in the Antarctic Boundary Layer: impact of BrO on MSA production. Atmospheric Chemistry and Physics, 8, 2985–2997. https://doi.org/10.5194/acp-8-2985-2008
  83. Reifenhäuser, W., & Heumann, K. G. (1992). Determinations of methyl iodide in the Antarctic atmosphere and the south polar sea. Atmospheric Environment. Part A. General Topics, 26(16), 2905–2912. https://doi.org/10.1016/0960-1686(92)90282-P
  84. Roveretto, M., Li, M., Hayeck, N., Brüggemann, M., Emmelin, C., Perrier, S., & George, C. (2019). Real-time detection of gas-phase organohalogens from aqueous photochemistry using orbitrap mass spectrometry. ACS Earth and Space Chemistry, 3(3), 329–334. https://doi.org/10.1021/acsearthspacechem.8b00209
  85. Rudolph, J., Khedim, A., & Wagenbach, D. (1989). The seasonal variation of light nonmethane hydrocarbons in the Antarctic troposphere. Journal of Geophysical Research: Atmospheres, 94(D10), 13039–13044. https://doi.org/10.1029/JD094iD10p13039
  86. Sadler, I. (1968). Observations on the ice caps of Galindez and Skua Islands, Argentine Islands, 1960–66. British Antarctic Survey Bulletin, 17, 21–49
  87. Saito, T., Yokouchi, Y., Aoki, S., Nakazawa, T., Fujii, Y., & Watanabe, O. (2007). Ice-core record of methyl chloride over the last glacial-Holocene climate change. Geophysical Research Letters, 34(3), L03801. https://doi.org/10.1029/2006GL028090
  88. Saltzman, E. S., Aydin, M., Tatum, C., & Williams, M. B. (2008). 2,000-year record of atmospheric methyl bromide from a South Pole ice core. Journal of Geophysical Research: Atmospheres, 113(D5), D05304. https://doi.org/10.1029/2007JD008919
  89. Sander, R. (2015). Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15, 4399–4981. https://doi.org/10.5194/acp-15-4399-2015
  90. Sander, R., & Bottenheim, J. (2012). A compilation of tropospheric measurements of gas-phase and aerosol chemistry in polar regions. Earth System Science Data, 4, 215–282. https://doi.org/10.5194/essd-4-215-2012
  91. Scholander, P. F., Hemmingsen, E. A., Coachman, L. K., & Nutt, D. C. (1961). Composition of gas bubbles in Greenland icebergs. Journal of Glaciology, 3(29), 813–822. https://doi.org/10.3189/S0022143000027180
  92. Seinfeld, J. H., & Pandis, S. N. (1997). Atmospheric chemistry and physics. From air pollution to climate change. New York, John Wiley & Sons, Inc.
  93. Singh, O. N., & Fabian, P. (1999). Reactive bromine compounds. In P. Fabian, & O. N. Singh (Eds.), Reactive halogen compounds in the atmosphere (pp. 1–43). Berlin, Springer-Verlag. https://doi.org/10.1007/10628761_1
  94. Sowers, T., Alley, R. B., & Jubenville, J. (2003). Ice core records of atmospheric N2O covering the last 106,000 years. Science, 301(5635), 945–948. https://doi.org/10.1126/science.1085293
  95. Spolaor, A., Burgay, F., Fernandez, R. P., Turetta, C., Cuevas, C. A., Kim, K., Kinnison, D. E., Lamarque, J.-F., de Blasi, F., Barbaro, E., Corella, J. P., Vallelonga, P., Frezzotti, M., Barbante, C., & Saiz-Lopez, A. (2021). Antarctic ozone hole modifies iodine geochemistry on the Antarctic Plateau. Nature Communications, 12, 5836. https://doi.org/10.1038/s41467-021-26109-x
  96. Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., & Shindell, D. T. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459–462. https://doi.org/10.1038/nature07669
  97. Sturges, W. T., McIntyre, H. P., Penkett, S. A., Chappellaz, J., Barnola, J.-M., Mulvaney, R., Atlas, E., & Stroud, V. (2001a). Methyl bromide, other brominated methanes and methyl iodide in polar firn air. Journal of Geophysical Research: Atmospheres, 106(D2), 1595–1606. https://doi.org/10.1029/2000JD900511
  98. Sturges, W. T., Penkett, S. A., Barnola, J.-M., Chappellaz, J., Atlas, E., & Stroud, V. (2001b). A long-term record of carbonyl sulfide (COS) in two hemispheres from firn air measurements. Geophysical Research Letters, 28(21), 4095–4098. https://doi.org/10.1029/2001GL013958
  99. Sturrock, G. A., Etheridge, D. M., Trudinger, C. M., Fraser, P. J., & Smith, A. M. (2002). Atmospheric histories of halocarbons from analysis of Antarctic firn air: Major Montreal Protocol species. Journal of Geophysical Research: Atmospheres, 107(D24), 4765. https://doi.org/10.1029/2002JD002548
  100. Swanson, A. L., Blake, N. J., Blake, D. R., Rowland, F. S., Dibb, J. E., Lefer, B. L., & Atlas, E. (2007). Are methyl halides produced on all ice surfaces? Observations from snow-laden field sites. Atmospheric Environment, 41(24), 5162–5177. https://doi.org/10.1016/j.atmosenv.2006.11.064
  101. Swanson, A. L., Blake, N. J., Dibb, J. E., Albert, M. R., Blake, D. R., & Rowland, F. S. (2002). Photochemically induced production of CH3Br, CH3I, C2H5I, ethene, and propene within surface snow at Summit, Greenland. Atmospheric Environment, 36(15–16), 2671–2682. https://doi.org/10.1016/S1352-2310(02)00127-9
  102. Thomas, R. H. (1963). Studies on the ice cap of Galindez Island, Argentine Islands. British Antarctic Survey Bulletin, 2, 27–43.
  103. Thompson, L. G. (2000). Ice core evidence for climate change in the Tropics: implications for our future. Quaternary Science Reviews, 19(1–5), 19–35. https://doi.org/10.1016/S0277-3791(99)00052-9
  104. Tinel, L., Dumas, S., & George, C. (2014). A time-resolved study of the multiphase chemistry of excited carbonyls: Imidazole-2-carboxaldehyde and halides. Comptes Rendus Chimie, 17(7–8), 801–807. https://doi.org/10.1016/j.crci.2014.03.008
  105. Tretyak, K., Hlotov, V., Holubinka, Y., & Marusazh, K. (2016). Complex geodetic research in Ukrainian Antarctic station ‘Academician Vernadsky’ (years 2002–2005, 2013–2014). Reports on Geodesy and Geoinformatics, 100(1), 149–163. https://doi.org/10.1515/rgg-2016-0012
  106. Trudinger, C. M., Etheridge, D. M., Sturrock, G. A., Fraser, P. J., Krummel, P. B., & McCulloch, A. (2004). Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and dichloromethane. Journal of Geophysical Research: Atmospheres, 109(D22), D22310. https://doi.org/10.1029/2004JD004932
  107. Trudinger, C. M., Fraser, P. J., Etheridge, D. M., Sturges, W. T., Vollmer, M. K., Rigby, M., Martinerie, P., Muhle, J., Worton, D. R., Krummel, P. B., Steele, L. P., Miller, B. R., Laube, J., Mani, F. S., Rayner, P. J., Harth, C. M., Witrant, E., Blunier, T., Schwander, J., O’Doherty, S., & Battle, M. (2016). Atmospheric abundance and global emissions of perfluorocarbons CF4, C2F6 and C3F8 since 1800 inferred from ice core, firn, air archive and in situ measurements. Atmospheric Chemistry and Physics, 16(18), 11733–11754. https://doi.org/10.5194/acp-16-11733-2016
  108. Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., & Lagovkina, S. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology, 25(3), 279–294. https://doi.org/10.1002/joc.1130
  109. Urhahn, T., & Ballschmiter, K. (1998). Chemistry of the biosynthesis of halogenated methanes: Cl-organohalogens as pre-industrial chemical stressors in the environment? Chemosphere, 37(6), 1017–1032. https://doi.org/10.1016/S0045-6535(98)00100-3
  110. van Ommen, T. D., & Morgan, V. (1996). Peroxide concentrations in the Dome Summit South ice core, Law Dome, Antarctica. Journal of Geophysical Research: Atmospheres, 101(D10), 15147–15152. https://doi.org/10.1029/96JD00838
  111. van Rijssel, M., & Gieskes, W. W. C. (2002). Temperature, light, and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae). Journal of Sea Research, 48(1), 17–27. https://doi.org/10.1016/S1385-1101(02)00134-X
  112. Vaughan, D. G. (2006). Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arctic, Antarctic, and Alpine Research, 38(1), 147–152. https://doi.org/10.1657/1523-0430(2006)038[0147:RTIMCO]2.0.CO;2
  113. Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., & Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243–274. https://doi.org/10.1023/A:1026021217991
  114. Vogt, R. (1999). Iodine compounds in the atmosphere. In P. Fabian, & O. N. Singh (Eds.), Reactive halogen compounds in the atmosphere (pp. 113–128). Berlin, Springer-Verlag. https://doi.org/10.1007/10628761_4
  115. Walter, B., & Ballschmiter, K. (1992). Formation of C1/C2-bromo-/chloro-hydrocarbons by haloperoxidase reactions. Fresenius’ Journal of Analytical Chemistry, 342, 827–833. https://doi.org/10.1007/BF00322143
  116. Watanabe, H., Otsuka, T., Harada, M., & Okada, T. (2014). Imbalance between anion and cation distribution at ice interface with liquid phase in frozen electrolyte as evaluated by fluorometric measurements of pH. The Journal of Physical Chemistry C, 118(29), 15723–15731. https://doi.org/10.1021/jp5031653
  117. Williams, M. B., Aydin, M., Tatum, C., & Saltzman, E. S. (2007). A 2000 year atmospheric history of methyl chloride from a South Pole ice core: Evidence for climate-controlled variability. Geophysical Research Letters, 34(7), L07811. https://doi.org/10.1029/2006GL029142
  118. WMO. (2002). Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project-Report No. 47. World Meteorological Organization.
  119. Xie, H., Moore, R. M., & Miller, W. L. (1998). Photochemical production of carbon disulphide in seawater. Journal of Geophysical Research: Oceans, 103(Ñ3), 5635–5644. https://doi.org/10.1029/97JC02885