Ukrainian Antarctic Journal

Vol 22 No 1(28) (2024): Ukrainian Antarctic Journal
Articles

Ionospheric response to the February 27, 2023 intense geomagnetic storm over Kharkiv and the Akademik Vernadsky station

Maryna Reznychenko
Institute of Ionosphere, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine; Space Research Centre of Polish Academy of Sciences, Warsaw, 00-716, Poland
Dmytro Kotov
Institute of Ionosphere, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine
Oleksandr Bogomaz
Institute of Ionosphere, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Taras Zhivolup
Institute of Ionosphere, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine
Artem Reznychenko
Space Research Centre of Polish Academy of Sciences, Warsaw, 00-716, Poland; Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, 61002, Ukraine
Andriy Zalizovski
Space Research Centre of Polish Academy of Sciences, Warsaw, 00-716, Poland; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, 61002, Ukraine
Oleksandr Koloskov
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, 61002, Ukraine; University of New Brunswick, Fredericton, New Brunswick, E3B5A3, Canada
Volodymyr Lisachenko
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, 61002, Ukraine
Dmytro Dzyubanov
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, 61002, Ukraine
Published September 7, 2024
Keywords
  • electron density,
  • empirical model,
  • F2-layer peak height,
  • geomagnetic storm,
  • ionosonde,
  • ionosphere
  • ...More
    Less
How to Cite
Reznychenko, M., Kotov, D., Bogomaz, O., Zhivolup, T., Reznychenko, A., Zalizovski, A., Koloskov, O., Lisachenko, V., & Dzyubanov, D. (2024). Ionospheric response to the February 27, 2023 intense geomagnetic storm over Kharkiv and the Akademik Vernadsky station. Ukrainian Antarctic Journal, 22(1(28), 40-50. https://doi.org/10.33275/1727-7485.1.2024.726

Abstract

This study aims to investigate ionospheric responses to the February 27, 2023 intense geomagnetic storm over Kharkiv and the Akademik Vernadsky (hereinafter – Vernadsky) station using ionosondes. The behavior of the key ionospheric parameters (hmF2 and NmF2) before, during, and after the geomagnetic storm was investigated. The observational F2-layer peak electron density and height were compared with those derived by the International Reference Ionosphere (IRI-2016) model. Significant negative ionospheric storms were identified over Kharkiv during all the nights after the geomagnetic storm beginning (up to ~70% decrease of the NmF2). At the same time, during the daytime hours of February 27, a moderate positive ionospheric storm (up to ~40% increase of the NmF2) was registered. Over Vernadsky Station, during the main phase of the geomagnetic storm, a very strong negative ionospheric storm (up to a factor of ~4 reduction of the NmF2) was observed both during daytime and night-time. We offer hypotheses of the possible physical mechanisms (electrodynamics, changes in the neutral composition, partial depletion of the plasmasphere, and a shift of the ionospheric trough) responsible for the observed ionospheric effects. Further investigations with physical models of the coupled atmosphere, ionosphere, and plasmasphere are necessary to identify the dominant drivers in each case. Comparison of the observed ionospheric parameters with the predictions of IRI F2-layer peak sub-models shows that neither hmF2 (AMTB-2013 and SHU-2015), and NmF2 (URSI and CCIR) sub-models can qualitatively reproduce strong storm-induced ionospheric variations over Kharkiv. Over Vernadsky Station, both hmF2 sub-models underestimate the observed hmF2 during the storm period, whereas the NmF2 sub-models are more sensitive to the changes in geomagnetic activity. Under geomagnetically quiet conditions, the qualitative agreement between observations and the model is satisfactory, but further improvements of the empirical models are required to reach acceptable accuracy of quantitative predictions.

References

  1. Aa, E., Zhang, S.-R., Wang, W., Erickson, P. J., & Coster, A. J. (2023). Multiple longitude sector storm-enhanced density (SED) and long-lasting subauroral polarization stream (SAPS) during the 26–28 February 2023 geomagnetic storm. Journal of Geophysical Research: Space Physics, 128(9), e2023JA031815. https://doi.org/10.1029/2023JA031815
  2. Altadill, D., Magdaleno, S., Torta, J. M., & Blanch, E. (2013). Global empirical models of the density peak height and of the equivalent scale height for quiet conditions. Advances in Space Research, 52(10), 1756–1769. https://www.doi.org/10.1016/j.asr.2012.11.018
  3. Arslan Tariq, M., Liu, L., Shah, M., Yang, Y., Sun, W., Ali Shah, M., Zhang, R., & Yoshikawa, A. (2024). Longitudinal variations of ionospheric responses to the February and April 2023 geomagnetic storms over American and Asian sectors. Advances in Space Research, 73(6), 3033–3049. https://doi.org/10.1016/j.asr.2023.12.039
  4. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang, X. (2017). International reference ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather, 15(2), 418–429. https://doi.org/10.1002/2016SW001593
  5. Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., & Pignalberi, A. (2022). The International Reference Ionosphere model: a review and description of an ionospheric benchmark. Reviews of Geophysics, 60(4), e2022RG000792. https://doi.org/10.1029/2022RG000792
  6. Bogomaz, O. V., Shulha, M. O., Kotov, D. V., Zhivolup, T. G., Koloskov, A. V., Zalizovski, A. V., Kashcheyev, S. B., Reznychenko, A. I., Hairston, M. R., & Truhlik, V. (2019). Ionosphere over Ukrainian Antarctic Akademik Vernadsky station under minima of solar and magnetic activities, and daily insolation: case study for June 2019. Ukrainian Antarctic Journal, (2(19), 84–93. https://doi.org/10.33275/1727-7485.2(19).2019.154
  7. Bojilova, R., & Mukhtarov, P. (2023). Analysis of the ionospheric response to Sudden Stratospheric Warming and geomagnetic forcing over Europe during February and March 2023. Universe, 9(8), 351. https://doi.org/10.3390/universe9080351
  8. Borries, C., Berdermann, J., Jakowski, N., & Wilken, V. (2015). Ionospheric storms – a challenge for empirical forecast of the total electron content. Journal of Geophysical Research: Space Physics, 120(4), 3175–3186. https://doi.org/10.1002/2015JA020988
  9. Broom, S. M. (1984). A new ionosonde for Argentine Islands ionospheric observatory, Faraday Station. British Antarctic Survey Bulletin, 62, 1–6. http://nora.nerc.ac.uk/id/eprint/523821/
  10. Fuller-Rowell, T. J. (2011). Storm–time response of the thermosphere–ionosphere system. In M. A. Abdu, & D. Pancheva (Eds.), Aeronomy of the Earth’s Atmosphere and Ionosphere (Vol. 2, pp. 419–435). Springer. https://doi.org/10.1007/978-94-007-0326-1_32
  11. Fuller-Rowell, T. J., Araujo-Pradere, E., & Codrescu, M. V. (2000). An empirical ionospheric storm-time correction model. Advances in Space Research, 25(1), 139–146. https://doi.org/10.1016/S0273-1177(99)00911-4
  12. Huang, X., & Reinisch, B. W. (1996). Vertical electron density profiles from the Digisonde network. Advances in Space Research, 18(6), 121–129. https://doi.org/10.1016/0273-1177(95)00912-4
  13. International Radio Consultative Committee (CCIR). (1967). CCIR Atlas of ionospheric characteristics. (Report No. 340). International Telecommunication Union. https://search.itu.int/history/HistoryDigitalCollectionDocLibrary/4.281.43.es.3019.pdf
  14. Koloskov, O., Kashcheyev, A., Bogomaz, O., Sopin, A., Gavrylyuk, B., & Zalizovski, A. (2023). Performance analysis of a portable low-cost SDR-based ionosonde. Atmosphere, 14(1), 159. https://doi.org/10.3390/atmos14010159
  15. Koloskov, O. V., Kashcheyev, A. S., Zalizovski, A. V., Kashcheyev, S. B., Budanov, O. V., Charkina, O. V., Pikulik, I. I., Lysachenko, V. M., Sopin, A. O., & Reznychenko, A. I. (2019). New digital ionosonde developed for Akademik Vernadsky station. In Book of Abstracts “IX International Antarctic Conference dedicated to the 60th anniversary of the signing of the Antarctic Treaty in the name of peace and development of international cooperation: Physical sciences” (Kyiv, 14–16 May, 2019, pp. 170–171). http://uac.gov.ua/international-cooperation/mak/mak-2019/
  16. Kotov, D. V., Richards, P. G., Bogomaz, O. V., Chernogor, L. F., Truhlík, V., Emelyanov, L. Ya., Chepurnyy, Ya. M., & Domnin, I. F. (2016). The importance of neutral hydrogen for the maintenance of the midlatitude winter nighttime ionosphere: evidence from IS observations at Kharkiv, Ukraine, and field line interhemispheric plasma model simulations. Journal of Geophysical Research: Space Physics, 121(7), 7013–7025. https://doi.org/10.1002/2016JA022442
  17. Kotov, D. V., Richards, P. G., Truhlík, V., Bogomaz, O. V., Shulha, M. O., Maruyama, N., Hairston, M., Miyoshi, Y., Kasahara, Y., Kumamoto, A., Tsuchiya, F., Matsuoka, A., Shinohara, I., Hernández-Pajares, M., Domnin, I. F., Zhivolup, T. G., Emelyanov, L. Ya., & Chepurnyy, Ya. M. (2018). Coincident observations by the Kharkiv IS radar and ionosonde, DMSP and Arase (ERG) Satellites, and FLIP model simulations: implications for the NRLMSISE-00 hydrogen density, plasmasphere, and ionosphere. Geophysical Research Letters, 45(16), 8062–8071. https://doi.org/10.1029/2018GL079206
  18. Kotov, D. V., Richards, P. G., Truhlík, V., Maruyama, N., Fedrizzi, M., Shulha, M. O., Bogomaz, O. V., Lichtenberger, J., Hernández-Pajares, M., Chernogor, L. F., Emelyanov, L. Ya., Zhivolup, T. G., Chepurnyy, Ya. M. & Domnin, I. F. (2019). Weak magnetic storms can modulate ionosphere-plasmasphere interaction significantly: mechanisms and manifestations at mid-latitudes. Journal of Geophysical Research: Space Physics, 124, 9665–9675. https://doi.org/10.1029/2019JA027076
  19. Matyjasiak, B., Przepiórka, D., & Rothkaehl, H. (2016). Seasonal variations of mid-latitude ionospheric trough structure observed with DEMETER and COSMIC. Acta Geophysica, 64, 2734–2747. https://doi.org/10.1515/acgeo-2016-0102
  20. Panasenko, S. V., Kotov, D. V., Otsuka, Y., Yamamoto, M., Hashiguchi, H., Richards, P. G., Truhlik, V., Bogomaz, O. V., Shulha, M. O., Zhivolup, T. G., & Domnin, I. F. (2021). Coupled investigations of ionosphere variations over European and Japanese regions: observations, comparative analysis, and validation of models and facilities. Progress in Earth and Planetary Science, 8, 45. https://doi.org/10.1186/s40645-021-00441-8
  21. Prölss, G. W. (2004). Physics of the Earth’s space environment. An Introduction (1st ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-97123-5
  22. Prölss, G. W. (2008). Ionospheric storms at mid-latitude: a short review. In P. M. Kintner Jr., A. J. Coster, T. Fuller-Rowell, A. J. Mannucci, M. Mendillo, & R. Heelis (Eds.), Midlatitude Ionospheric Dynamics and Disturbances (Vol. 181, pp. 9–24). AGU, Washington, D. C. https://doi.org/10.1029/181GM03
  23. Reznychenko, M., Bogomaz, O., Kotov, D., Zhivolup, T., Koloskov, O., & Lisachenko, V. (2022). Observation of the ionosphere by ionosondes in the Southern and Northern hemispheres during geospace events in October 2021. Ukrainian Antarctic Journal, 20(1(24), 18–30. https://doi.org/10.33275/1727-7485.1.2022.686
  24. Reznychenko, M. O., Kotov, D. V., Bogomaz, O. V., Koloskov, O. V., & Lisachenko, V. M. (2023). Ionospheric response to some moderate geomagnetic storms over the Ukrainian Antarctic station and magnetically conjugated region. In Book of Abstracts “XI International Antarctic Conference dedicated to the 160th anniversary of the birth of Volodymyr Vernadsky – the first president of the Ukrainian Academy of Sciences, founder of the study of Noosphere” (Kyiv, 10–12 May, 2023, pp. 65–66). http://uac.gov.ua/wp-content/uploads/2023/05/Book-of-Abstracts_IAC-11_2023_.pdf
  25. Rush, C., Fox, M., Bilitza, D., Davies, K., McNamara, L., Stewart, F., & PoKempner, M. (1989). Ionospheric mapping – An update of foF2 coefficients. Telecommunications Journal, 56(3), 179–182.
  26. Shubin, V. N. (2015). Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations. Advances in Space Research, 56(5), 916–928. https://doi.org/10.1016/j.asr.2015.05.029
  27. Shulha, M. O., Kotov, D. V., Bogomaz, O. V., Zhivolup, T. G., Koloskov, O. V., Lisachenko, V. M., & Hairston, M. (2019). Multi-instrumental and modeling investigation of ionospheric response to weak geomagnetic storm of 21–23 March 2017 over the Ukrainian Antarctic station and magnetically conjugate region. In Book of Abstracts “IX International Antarctic Conference dedicated to the 60th anniversary of the signing of the Antarctic Treaty in the name of peace and development of international cooperation” (Kyiv, 14–16 May, 2019, pp. 185–186). http://uac.gov.ua/international-cooperation/mak/mak-2019/
  28. Yang, N., Yu, T., Le, H., Liu, L., Sun, Y.-Y., Yan, X., Wang, J., Xia, C., Zuo, X., & Huang, G. (2022). The feature of ionospheric mid-latitude trough during geomagnetic storms derived from GPS Total Electron Content (TEC) data. Remote Sensing, 14(2), 369. https://doi.org/10.3390/rs14020369
  29. Zalizovski, A. V., Kashcheyev, A. S., Kashcheyev, S. B., Koloskov, A. V., Lisachenko, V. N., Paznukhov, V. V., Pikulik, I. I., Sopin, A. A., & Yampolski, Yu. M. (2018). A prototype of a portable coherent ionosonde model. Space Science and Technology, 24(3), 10–22. https://doi.org/10.15407/knit2018.03.010