Ukrainian Antarctic Journal

Vol 22 No 1(28) (2024): Ukrainian Antarctic Journal
Articles

Oribatid mites (Acariformes: Sarcoptiformes) in Sub-Antarctic Islands and Antarctica: a track analysis

Patricio R. De los Ríos-Escalante
Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Box 15-D, Temuco, 0211, Chile; UC Temuco Environmental Studies Center, Temuco, 0211, Chile
Pedro Jara-Seguel
Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Box 15-D, Temuco, Chile; UC Temuco Environmental Studies Center, Temuco, 0211, Chile
Emmanuel O. Ahaotu
Department of Animal Sciences, University of Agriculture and Environmental Sciences, Umuagwo, 464115, IMO State, Nigeria; Department of Animal Production and Health Technology, Imo State Polytechnic, Umuagwo, 464115, IMO State, Nigeria
Published September 7, 2024
Keywords
  • biogeography,
  • mite,
  • nodes,
  • oribatid,
  • Sub-Antarctica,
  • track analysis
  • ...More
    Less
How to Cite
R. De los Ríos-Escalante, P., Jara-Seguel, P., & O. Ahaotu, E. (2024). Oribatid mites (Acariformes: Sarcoptiformes) in Sub-Antarctic Islands and Antarctica: a track analysis. Ukrainian Antarctic Journal, 22(1(28), 82-94. https://doi.org/10.33275/1727-7485.1.2024.729

Abstract

Southern non-marine mites are widely distributed in the continents that developed out of the macrocontinent Gondwana, with similar groups found in Australia, New Zealand, Sub-Antarctic Islands, and southern South America. In the present study, we conducted a literature analysis of non-marine oribatid (moss) mite species (Acariformes: Sarcoptiformes) studies at the Sub-Antarctic Islands and Antarctic continent, an applied a track analysis. The purpose of the study is to identify sites potentially inhabited by ancestor species and understand the biogeographical patterns of their dispersion to new sites where current species have arisen through speciation processes. The results of the track analysis revealed the existence of species that inhabit three main zones: the first track includes South Georgia and the Sub-Antarctic Islands of the South Atlantic, the southern Indian Ocean and southern Australia and New Zealand. The second track includes South Georgia Island and the Antarctic Peninsula; and the third track includes South Georgia Island and the Falkland Islands. All these tracks intersect in South Georgia Island, suggesting that this island would be the zone from which the species reported spread to the other sites mentioned, colonizing Antarctica, the Falkland Islands, and probably southern South America.

References

  1. Bayly, I. A. E. (1993). The fauna of athalassic saline waters in Australia and the Altiplano of South America: comparisons and historical perspectives. Hydrobiologia, 267, 225–231. https://doi.org/10.1007/BF00018804
  2. Cannizzaro, A. G., & Berg, D. J. (2022). Gone with Gondwana: Amphipod diversification in freshwaters followed the breakup of the supercontinent. Molecular Phylogenetics and Evolution, 171, 107464. https://doi.org/10.1016/j.ympev.2022.107464
  3. Cook, D. R. (1988). Water mites from Chile. Memoirs of the American Entomological Institute, 42, 1–356.
  4. Cussac, V., Ortubay, S., Iglesias, G., Milano, D., Lattuca, M. E., Barriga, J. P., Battini, M., & Gross, M. (2004). The distribution of South American galaxiid fishes: the role of biological traits and post-glacial history. Journal of Biogeography, 31(1), 103–121. https://doi.org/10.1046/j.0305-0270.2003.01000.x
  5. Díaz, A., Maturana, C. S., Boyero, L., De Los Rios-Escalante, P., Tonin, A. M., & Correa-Araneda, F. (2019). Spatial distribution of freshwater crustaceans in Antarctic and Subantarctic lakes. Scientific Reports, 9, 7928. https://doi.org/10.1038/s41598-019-44290-4
  6. Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R Journal, 5(1), 144–161. https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
  7. Menu-Marque, S., Morrone, J. J., & Locascio de Mitrovich, C. (2000). Distributional patterns of the South American species of Boeckella (Copepoda: Centropagidae): a track analysis. Journal of Crustacean Biology, 20(2), 262–272. https://doi.org/10.1163/20021975-99990038
  8. Morrone, J. J. (2009). Evolutionary biogeography: An integrative approach with case studies. Columbia University Press.
  9. Morrone, J. J. (2015). Biogeographical regionalisation of the Andean region. Zootaxa, 3936(2), 207–236. https://doi.org/10.11646/zootaxa.3936.2.3
  10. Morrone, J. J., & Crisci, J. V. (1995). Historical biogeography: introduction to methods. Annual Review of Ecology, Evolution, and Systematics, 26, 373–401. https://doi.org/10.1146/annurev.es.26.110195.002105
  11. Mortimer, E. (2008). Phylogeny of Ameronothroidea in the south polar region and the phylogeography of selected species on sub-antarctic Marion Island (Doctoral dissertation, Stellenbosch: Stellenbosch University). http://hdl.handle.net/10019.1/21744
  12. Mortimer, E., Jansen van Vuuren, B., Lee, J. E., Marshall, D. J., Convey, P., & Chown, S. L. (2011). Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proceedings of the Royal Society B: Biological Sciences, 278(1709), 1247–1255. https://doi.org/10.1098/rspb.2010.1779
  13. Pešić, V., & Smit, H. (2020). Water mites of the genus Corticacarus Lundblad, 1936 with the description of two new species (Acari: Hydrachnidia, Hygrobatidae). Systematic & Applied Acarology, 25(8), 1472–1484. https://doi.org/10.11158/saa.25.8.9
  14. Pešić, V., Smit, H., & Datry, T. (2010). New records of water mites (Acari: Hydrachnidia, Halacaroidea) from Patagonia (Chile). Systematic & Applied Acarology, 15(2), 151–160. https://doi.org/10.11158/saa.15.2.11
  15. Pugh, P. J. A. (1993). A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic Islands and the Southern Ocean. Journal of Natural History, 27(2), 323–421. https://doi.org/10.1080/00222939300770171
  16. Pugh, P. J. A., & Convey, P. (2000). Scotia Arc Acari: antiquity and origin. Zoological Journal of the Linnean Society, 130(2), 309–328. https://doi.org/10.1111/j.1096-3642.2000.tb01633.x
  17. Pugh, P. J. A., Dartnall, H. J. G., & McInnes, S. J. (2002). The non-marine Crustacea of Antarctica and the Islands of the Southern Ocean: biodiversity and biogeography. Journal of Natural History, 36(9), 1047–1103. https://doi.org/10.1080/00222930110039602
  18. R Development Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  19. Rosso de Ferrádas, B., & Fernández, H. R. (2005). Elenco y biogeografía de los ácaros acuáticos (Acari, Parasitengona, Hydrachnidia) de Sudamérica. Graellsia, 61(2), 181–224. https://doi.org/10.3989/graellsia.2005.v61.i2.19
  20. Rosso de Ferrádas, B., & Fernández, H. R. (2009). Acari, Parasitengona, Hydrachnidia. In E. Dominguez, & H. R. Fernández (Eds.), Macroinvertebrados bentónicos sudamericanos. Sistemática y biología (pp. 497–549). Fundación Miguel Lillo.
  21. Smit, H. (2021). New records of water mites from Chile (Acari: Hydrachnidia), with the description of three new species. Acarologia, 61(2), 274–290. https://doi.org/10.24349/acarologia/20214430
  22. Starý, J., & Block, W. (1995). Oribatid mites (Acari: Oribatida) of South Georgia, South Atlantic. Journal of Natural History, 29(6), 1469–1481. https://doi.org/10.1080/00222939500770631
  23. Starý, J., & Block, W. (1996). Oribatid mites (Acari: Oribatida) of the Falkland Islands, South Atlantic and their zoogeographical relationships. Journal of Natural History, 30(4), 523–535. https://doi.org/10.1080/00222939600770281
  24. Starý, J., & Block, W. (1998). Distribution and biogeography of oribatid mites (Acari: Oribatida) in Antarctica, the sub-Antarctic islands and nearby land areas. Journal of Natural History, 32(6), 861–894. https://doi.org/10.1080/00222939800770451
  25. Starý, J., Block, W., & Greenslade, P. (1997). Oribatid mites (Acari: Oribatida) of sub-Antarctic Heard Island. Journal of Natural History, 31(4), 545–553. https://doi.org/10.1080/00222939700770281
  26. Subías, L. S. (2004). Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (1758–2002) Graellsia, 60 (Extraordinary Issue), 3–305. Retrieved December 7, 2023 from https://graellsia.revistas.csic.es/index.php/graellsia/article/view/218
  27. Tuzovskij, P. V., & Stolbov, V. A. (2016). Description of a new water mite species of the genus Corticacarus Lundblad, 1936 from Chile (Acari, Hydrachnidia: Hygrobatidae). Ecologica Montenegrina, 8, 34–37. https://doi.org/10.37828/em.2016.8.4
  28. Tuzovskij, P. V., & Stolbov, V.A. (2017). Description of a new water mite species of the genus Anisitsiellides Lundblad, 1941 (Acari, Hydrachnidia, Anisitsiellidae) from Chile. Ecologica Montenegrina, 10, 31–34. https://doi.org/10.37828/em.2017.10.6
  29. Tuzovsky, P. V., & Stolbov, V. A. (2017). Description of a new water mite species of the genus Rhynchaturus Besch, 1964 (Acari, Hydrachnidia: Hygrobatidae) from Chile. Acarina, 25, 51–54. https://doi.org/10.21684/0132-8077-2017-25-1-51-54
  30. Tuzovsky, P. V., & Stolbov, V. A. (2016). New water mite species of the genus Szalayella Lundblad fom Chile (Acari, Hydrachnidia: Hygrobatidae). Acarina, 24, 153–158. https://doi.org/10.21684/0132-8077-2016-24-2-153-158