Ukrainian Antarctic Journal

Vol 22 No 2(29) (2024): Ukrainian Antarctic Journal
Articles

The procedure for preparing one-second variometer data of the Argentine Island geomagnetic observatory

Yurii Sumaruk
S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv, 03680, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Mykhaylo Orlyuk
S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv, 03680, Ukraine
Andriy Marusenkov
Lviv Center of Institute for Space Research, Lviv, 79060, Ukraine
Yurii Otruba
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Published December 31, 2024
Keywords
  • absolute observations,
  • geomagnetic observatory,
  • fluxgate magnetometer,
  • proton magnetometer
How to Cite
Sumaruk, Y., Orlyuk, M., Marusenkov, A., & Otruba, Y. (2024). The procedure for preparing one-second variometer data of the Argentine Island geomagnetic observatory. Ukrainian Antarctic Journal, 22(2(29), 146-162. https://doi.org/10.33275/1727-7485.2.2024.733

Abstract

Magnetic observatories have been and continue to be basic elements for studying historical and contemporary changes in the Earth’s geomagnetic field. In most cases, satellite data are used to characterize and study rapidly evolving processes in near-Earth space. However, in recent decades, data from ground-based observatories have been used to support satellite missions. These data must have high temporal resolution to analyze rapidly changing processes. Furthermore, processed data from observatories should be delivered with minimal delay. Advances in technology now allow geomagnetic observatories to be equipped with high-resolution instruments, enabling the rapid delivery of final data. This paper outlines the methods developed to obtain one-second ImagCDF data of the Quasi-definitive level using the geomagnetic records of the Argentine Island observatory (INTERMAGNET code AIA). The observatory's state-of-the-art equipment and absence of anthropogenic noise produce results that meet the INTERMAGNET requirements. The primary data were validated by analyzing the distribution of instrumental errors in the absolute
measurements. The quality of the difference in the field’s absolute value was assessed using statistical parameters, including the mean, standard deviation, and the absolute value of the maximum deviation. Peak and irregular noise values were identified by analyzing the results of numerical differentiation of the 10 Hz records from the LEMI-025N63 and the difference signals between this magnetometer and the proton magnetometer POS-1. Regular noises were identified from the signal spectra. Occasional spikes in the POS-1 readings were corrected by interpolating data between valid counts. One-minute temperature data of the sensor and electronic unit of the LEMI-025N63 variometer were aligned with the magnetic records (using identical digital filtering and resampling procedures). The data were processed using software recommended by INTERMAGNET.

References

  1. Clarke, E., Baillie, O., Reay, S. J., & Turbitt, C. W. (2013). A method for the near real-time production of quasi-definitive magnetic observatory data. Earth, Planets and Space, 65(11), 1363–1374. https://doi.org/10.5047/eps.2013.10.001
  2. De Boor, C. (2001). A practical guide to splines (Rev. ed.). Springer New York.
  3. Di Mauro, D., Ramdani, F., Fois, M., & Alfonsi, L. (2009). Preliminary results from the first geomagnetic deep sounding in the western sector of the Anti Atlas region, southern Morocco. In J. J. Love (Ed.), Proceedings of the XIIIth IAGA Workshop on geomagnetic observatory instruments, data acquisition, and processing (pp. 73–81). U.S. Geological Survey. https://www.earth-prints.org/handle/2122/5776
  4. Faden, J. B., Weigel, R. S., Merka, J., & Friedel, R. H. W. (2010). Autoplot: A browser for scientific data on the web. Earth Science Informatics, 3, 41–49. https://doi.org/10.1007/s12145-010-0049-0
  5. Flower, S. (2017). INTERMAGNET CDF data format – ImagCDF. INTERMAGNET Technical Note TN8 (v1.0). https://intermagnet.org/docs/technical/im_tn_8_ImagCDF.pdf
  6. Friedel, R., Cunningham, G., Morley, S., Jorgensen, A., Lichtenberger, J., Mann, I., & Cliverd, M. (2017). Radiation belt modeling: ground-based contributions [PowerPoint slides]. INTERMAGNET Workshop, Hermanus, South Africa, September 3–6. https://intermagnet.org/meetings/2017-Hermanus/Friedel_IntermagnetTalk.pdf
  7. Iovannitti, I., Piersanti, M., Tozzi, R., & De Michelis, P. (2019). Discrimination between ionospheric and magnetospheric origin contribution of GIC. Geophysical Research Abstracts, 21, 1. https://openurl.ebsco.com/EPDB%3Agcd%3A2%3A9466306/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A140487891&crl=c
  8. Korepanov, V., Klymovych, Ye., Kuznetsov, O., Pristay, A., Marusenkov, A., & Rasson, J. (2007). New INTERMAGNET fluxgate magnetometer. Publications of the Institute of Geophysics, Polish Academy of Sciences, C-99 (398), 291–298. https://dspace.igf.edu.pl/xmlui/bitstream/handle/123456789/90/398%20%28C-99%29.pdf?sequence=1&isAllowed=y
  9. Lewis, A. (2020, July 13–15). Quasi-definitive data compliance 2017 [PowerPoint slides]. INTERMAGNET Meeting Minutes. On-Line. https://intermagnet.org/meetings/2020-Online/Lewis_qd_comparison2017.pptx
  10. Macmillan, S., & Olsen, N. (2013). Observatory data and the Swarm mission. Earth, Planets and Space, 65, 1355–1362. https://link.springer.com/article/10.5047/eps.2013.07.011
  11. Marusenkov, A. (2018). Accurate estimation of variometers’ frequency response and synchronization errors. COBS Journal, Special Issue: IAGA Workshop 2018, 5, 9. https://cobs.zamg.ac.at/gsa/index.php/en/science/publications/conrad-observatory-journal/cobsjournal-5
  12. Marusenkov, A., Leonov, M., Korepanov, V., Leonov, S., Koloskov, A., Nakalov, Ye., & Otruba, Yu. (2019). Upgrade of the Argentine Islands INTERMAGNET observatory at Akademik Vernadsky station, Antarctica. Ukrainian Antarctic Journal, (1(18)), 103–115. https://doi.org/10.33275/1727-7485.1(18).2019.135
  13. Nahayo, E., Kotzé, P. B., Cilliers, P. J., & Lotz, S. (2019). Observations from SANSA’s geomagnetic network during the Saint Patrick’s Day storm of 17—18 March 2015. South African Journal of Science, 115(1/2). https://doi.org/10.17159/sajs.2019/5637
  14. Orlyuk, M., & Romenets, A. (2008). Geomagnetic maps of the region of the station Akademik Vernadsky: Geological and ecological aspects. In International Antarctic Conference IAC2008: Ukraine in Antarctica – National Priorities and Global Integration, May 23–25, 2008, Kyiv, Ukraine (p. 91). http://www.terreco.univ.kiev.ua/conference/iac-2008
  15. Orlyuk, M., & Romenets, A. (2018). Spatial-time disturbance of geomagnetic field for some territories of the north and southern hemispheres: ecological aspect. In Proceedings of the XVIIth International Conference on Geoinformatics – Theoretical and Applied Aspects, May 2018 (Vol. 2018, p. 1–4). https://doi.org/10.3997/2214-4609.201801845
  16. Orlyuk, M. I., & Romenets, A. A. (2020). Spatial-temporal change of the geomagnetic field: environmental aspect. Geofizicheskiy Zhurnal, 42(4), 18–38. https://doi.org/10.24028/gzh.0203-3100.v42i4.2020.210670
  17. Peltier, A., & Chulliat, A. (2010). On the feasibility of promptly producing quasi-definitive magnetic observatory data. Earth, Planets and Space, 62, e5–e8. https://doi.org/10.5047/eps.2010.02.002
  18. Rasson, J. (2008). Testing the timing accuracy of 1s INTERMAGNET variometer. INTERMAGNET Technical Note TN0001 (v1.1). https://intermagnet.org/docs/technical/im_tn_4_v1_1.pdf
  19. Rasson, J., Bracke, S., Gonsette, A., & Humbled, F. (2014, December 2–5). PEA: New magnetic observatory in East Antarctica near Utsteinen [PowerPoint slides]. The 5th Symposium on Polar Science. Tachikawa, Japan. National Institute of Polar Research.
  20. St-Louis, B. (Ed.) & INTERMAGNET Operations Committee and Executive Council. (2024). INTERMAGNET Technical Reference Manual, Version 5.1.1. https://tech-man.intermagnet.org/_/downloads/en/stable/pdf/
  21. Sumaruk, Yu., Marusenkov, A., Neska, A., Korepanov, V., & Leonov, M. (2022). Increasing the accuracy of absolute measurements at the Argentine Islands geomagnetic observatory of the Ukrainian Antarctic Akademik Vernadsky station. Ukrainian Antarctic Journal, 20(2(25)), 151–163. https://doi.org/10.33275/1727-7485.2.2022.697
  22. Turbitt, C. (2014). INTERMAGNET definitive one-second data standard. INTERMAGNET Technical Note TN6 (v1.0). https://intermagnet.org/docs/technical/im_tn_06_v1_0.pdf
  23. Turbitt, C., Matzka, J., Rasson, J., St-Louis, B., & Stewart, D. (2013). An instrument performance and data quality standard for INTERMAGNET one-second data exchange. In P. Hejda, A. Chulliat, & M., Catalán (Eds.), Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, Extended Abstract Volume (pp. 186–188). Real Instituto y Observatorio de la Armada en San Fernando. https://publicaciones.defensa.gob.es/media/downloadable/files/links/P/D/PDF502.pdf
  24. Worthington, E. W., & Matzka, J. (2017). U.S. Geological Survey experience with the residual absolutes method. Geoscientific Instrumentation, Methods and Data Systems, 6(2), 419–427. https://doi.org/10.5194/gi-6-419-2017