Ukrainian Antarctic Journal

Vol 22 No 2(29) (2024): Ukrainian Antarctic Journal
Articles

Biocontrol potential of Antarctic endophytic bacteria

Olga Iungin
Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine; Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, 44248, Lithuania
Yevheniia Prekrasna-Kviatkovska
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Oleksandr Kalinichenko
Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
Yaroslav Savchuk
D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
Marina Sidorenko
Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, 44248, Lithuania
Saulius Mickevičius
Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, 44248, Lithuania
Published December 31, 2024
Keywords
  • Antarctic region,
  • antifungal activity,
  • plant-microbe interactions
How to Cite
Iungin, O., Prekrasna-Kviatkovska, Y., Kalinichenko, O., Savchuk, Y., Sidorenko, M., & Mickevičius, S. (2024). Biocontrol potential of Antarctic endophytic bacteria. Ukrainian Antarctic Journal, 22(2(29), 219-228. https://doi.org/10.33275/1727-7485.2.2024.738

Abstract

Antarctic endophytes, adapted to harsh environmental conditions, possess unique metabolic capabilities that can influence plant-microbe interactions. In this study, we investigated the impact of 15 plant growth-promoting bacterial strains isolated from Deschampsia antarctica and Colobanthus quitensis on the growth of phytopathogenic fungi. Besides everything else, among growth-promoting traits it was shown that bacteria synthesized biosurfactants, ammonia, and auxin-like hormones for plant growth, and also have shown significant growth in a wide temperature range. While these endophytes exhibited significant antifungal activity against agriculturally important fungi, we also observed the stimulation of fungal growth by certain strains. This dual role of endophytes highlights the complex and contextdependent nature of plant-microbe interactions. Our findings suggest that the effects of endophytes on plant health can
be multifaceted. While they can directly inhibit pathogens, they can also indirectly influence the plant microbiome, potentially leading to beneficial and detrimental outcomes. Further research is needed to elucidate the mechanisms underlying these complex interactions and to harness Antarctic endophytes’ potential for sustainable agriculture.

References

  1. Abdelwahed, S., Trabelsi, E., Saadouli, I., Kouidhi, S., Masmoudi, A. S., Cherif, A., Mnif, W., & Mosbah, A. (2022). A new pioneer colorimetric micro-plate method for the estimation of ammonia production by plant growth promoting rhizobacteria (PGPR). Main Group Chemistry, 21(1), 55–68. https://doi.org/10.3233/MGC-210077
  2. Aggeli, F., Ziogas, I., Gkizi, D., Fragkogeorgi, G. A., & Tjamos, S. E. (2020). Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce. BioControl, 65, 763–773. https://doi.org/10.1007/s10526-020-10043-w
  3. Ahsan, N., & Shimizu, M. (2021). Lysinibacillus species: their potential as effective bioremediation, biostimulant, and biocontrol agents. Reviews in Agricultural Science, 9, 103–116. https://doi.org/10.7831/ras.9.0_103
  4. Alves, I. M. S., Gonçalves, V. N., Oliveira, F. S., Schaefer, C. E. G. R., Rosa, C. A., & Rosa, L. H. (2019). The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica. Extremophiles, 23, 327–336. https://doi.org/10.1007/s00792-019-01086-8
  5. Bauer, J. S., Hauck, N., Christof, L., Mehnaz, S., Gust, B., & Gross, H. (2016). The systematic investigation of the quorum sensing system of the biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PBSt2 unveils aurl to be a biosynthetic origin for 3-oxohomoserine lactones. Plos One, 11, e0167002. https://doi.org/10.1371/journal.pone.0167002
  6. Barra, P. J., Inostroza, N. G., Acuña, J. J., Mora, M. L., Crowley, D. E., & Jorquera, M. A. (2016). Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Applied Soil Ecology, 102, 80–91. https://doi.org/10.1016/j.apsoil.2016.02.014
  7. Chadha, N., Mishra, M., Prasad, R., & Varma, A. (2014). Root Endophytic Fungi: Research Update. Journal of Biology and Life Science, 5(2), 135–158. https://doi.org/10.5296/jbls.v5i2.5960
  8. Deshmukh, S. K., Gupta, M. K., Prakash, V., & Saxena, S. (2018). Endophytic fungi: A source of potential antifungal compounds. Journal of Fungi, 4(3), 77. https://doi.org/10.3390/jof4030077
  9. Duhan, P., Bansal, P., & Rani, S. (2020). Isolation, identification and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia. South African Journal of Botany, 134, 43–49. https://doi.org/10.1016/j.sajb.2020.01.047
  10. Elkahoui, S., Djébali, N., Tabbene, O., Hadjbrahim, A., Mnasri, B., Mhamdi, R., Shaaban, M., & Limam, F. (2012). Evaluation of antifungal activity from Bacillus strains against Rhizoctonia solani. African Journal of Biotechnology,11(18), 4196–4201. https://doi.org/10.5897/AJB11.3354
  11. Fadiji, A. E., & Babalola, O. O. (2020). Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Frontiers in Bioengineering and Biotechnology, 8, 467. https://doi.org/10.3389/fbioe.2020.00467
  12. Glandorf, D. C. M., Verheggen, P., Jansen, T., Jorritsma, J. W., Smit, E., Leeflang, P., Wernars, K., Thomashow, L. S., Laureijs, E., Thomas-Oates, J. E., Bakker, P. A. H. M., & van Loon, L. C. (2001). Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Applied and environmental microbiology, 67(8), 3371–3378. https://doi.org/10.1128/aem.67.8.3371-3378.2001
  13. Iungin, O., Prekrasna-Kviatkovska, Y., Kalinichenko, O., Moshynets, O., Potters, G., Sidorenko, M., Savchuk, Y., & Mickevičius, S. (2024). Endophytic bacterial biofilm-formers associated with Antarctic vascular plants. Microorganisms, 12(10), 1938. https://doi.org/10.3390/microorganisms12101938
  14. Kushwaha, P., Kashyap, P. L., Srivastava, A. K., & Tiwari, R. K. (2020). Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Brazilian Journal of Microbiology, 51, 229–241. https://doi.org/10.1007/s42770-019-00172-5
  15. Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., & van der Lelie, D. (2002). Endophytic bacteria and their potential applications. Critical reviews in plant sciences, 21(6), 583–606. https://doi.org/10.1080/0735-260291044377
  16. Lotfalinezhad, E., Taheri, A., Razavi, S. E., & Sanei, S. J. (2024). Preparation and assessment of alginate-microencapsulated Trichoderma harzianum for controlling Sclerotinia sclerotiorum and Rhizoctonia solani on tomato. International Journal of Biological Macromolecules, 259, 2, 129278. https://doi.org/10.1016/j.ijbiomac.2024.129278
  17. Mamarasulov, B., Davranov, K., Umruzaqov, A., Ercisli, S., Alharbi, S. A., Ansari, M. J., Krivosudská, E., Datta, R., & Jabborova, D. (2023). Evaluation of the antimicrobial and antifungal activity of endophytic bacterial crude extracts from medicinal plant Ajuga turkestanica (Rgl.) Brig (Lamiaceae). Journal of King Saud University-Science, 35(4), 102644. https://doi.org/10.1016/j.jksus.2023.102644
  18. Meliah, S., Sulistiyani, T. R., Lisdiyanti, P., Kanti, A., Sudiana, I. M., & Kobayashi, M. (2021). Antifungal activity of endophytic bacteria associated with sweet sorghum (Sorghum bicolor). Journal of Mathematical & Fundamental Sciences, 53(1). https://doi.org/10.5614/j.math.fund.sci.2021.53.1.2
  19. Meng, X.-J., Medison, R. G., Cao, S., Wang, L.-Q., Cheng, S., Tan, L.-T., Sun, Z.-X., & Zhou, Y. (2023). Isolation, identification, and biocontrol mechanisms of endophytic Burkholderia vietnamiensis C12 from Ficus tikoua Bur against Rhizoctonia solani. Biological Control, 178, 105132. https://doi.org/10.1016/j.biocontrol.2022.105132
  20. Mengistu, A. A. (2020). Endophytes: colonization, behaviour, and their role in defense mechanism. International Journal of Microbiology, 2020(1), 6927219. https://doi.org/10.1155/2020/6927219
  21. Midhun, S. J., & Jyothis, M. (2021). Pharmacological applications of bioactive secondary metabolites from endophytes. In R. H. Patil, & V. L. Maheshwari (Eds.), Endophytes (pp. 71–89). Springer, Singapore. https://doi.org/10.1007/978-981-15-9371-0_5
  22. Muñoz Torres, P., Cárdenas, S., Arismendi Macuer, M., Huanacuni, N., Huanca-Mamani, W., Cifuentes, D., & Sepúlveda Chavera, G. F. (2021). The endophytic Pseudomonas sp. S57 for plant-growth promotion and the biocontrol of phytopathogenic fungi and nematodes. Plants, 10(8), 1531. https://doi.org/10.3390/plants10081531
  23. Piłsyk, S., Perlińska-Lenart, U., Janik, A., Skalmowska, P., Znój, A., Gawor, J., Grzesiak, J., & Kruszewska, J. S. (2024). Native and alien Antarctic grasses as a habitat for fungi. International Journal of Molecular Sciences, 25(15), 8475. https://doi.org/10.3390/ijms25158475
  24. Rosa, L. H., da Costa Coelho, L., Pinto, O. H. B., Carvalho-Silva, M., Convey, P., Rosa, C. A., & Câmara, P. E. A. S. (2021). Ecological succession of fungal and bacterial communities in Antarctic mosses affected by a fairy ring disease. Extremophiles, 25, 471–481. https://doi.org/10.1007/s00792-021-01240-1
  25. Rong, S., Xu, H., Li, L., Chen, R., Gao, X., & Xu, Z. (2020). Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pesticide Biochemistry and Physiology, 162, 69–77. https://doi.org/10.1016/j.pestbp.2019.09.003
  26. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
  27. Shahzad, R., Khan, A. L., Bilal, S., Asaf, S., & Lee, I.-J. (2017). Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ, 5, e3107. https://doi.org/10.7717/peerj.3107
  28. Soltani Nejad, M., Bonjar, G. H. S., Khatami, M., Amini, A., & Aghighi, S. (2017). In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnology, 11(3), 236–240. https://doi.org/10.1049/iet-nbt.2015.0121
  29. Sokołowski, W., Marek-Kozaczuk, M., Sosnowski, P., Sajnaga, E., Jach, M. E., & Karaś, M. A. (2024). Profiling metabolites with antifungal activities from endophytic plant-beneficial strains of Pseudomonas chlororaphis isolated from Chamaecytisus albus (Hack.) Rothm. Molecules, 29(18), 4370. https://doi.org/10.3390/molecules29
  30. Styczynski, M., Biegniewski, G., Decewicz, P., Rewerski, B., Debiec-Andrzejewska, K., & Dziewit, L. (2022). Application of psychrotolerant Antarctic bacteria and their metabolites as efficient plant growth promoting agents. Frontiers in Bioengineering and Biotechnology, 10, 772891. https://doi.org/10.3389/fbioe.2022.772891
  31. Thavasi, R., Sharma, S., & Jayalakshmi, S. (2011). Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. Journal of Petroleum and Environmental Biotechnology S1, 1(2), 001. http://dx.doi.org/10.4172/2157-7463.S1-001
  32. Wu, T. L., Zhang, B. Q., Luo, X. F., Li, A. P., Zhang, S. Y., An, J. X., Zhang, Z. J., & Liu, Y. Q. (2023). Antifungal efficacy of sixty essential oils and mechanism of oregano essential oil against Rhizoctonia solani. Industrial Crops and Products, 191, A, 115975. https://doi.org/10.1016/j.indcrop.2022.115975
  33. Zhang, J., Zhu, Y., Si, J., & Wu, L. (2022). Metabolites of medicine food homology-derived endophytic fungi and their activities. Current Research in Food Science, 5, 1882–1896. https://doi.org/10.1016/j.crfs.2022.10.006
  34. Znój, A., Grzesiak, J., Gawor, J., Gromadka, R., & Chwedorzewska, K. J. (2022). Highly specialized bacterial communities within three distinct rhizocompartments of Antarctic hairgrass (Deschampsia antarctica Desv.). Polar Biology, 45, 833–844. https://doi.org/10.1007/s00300-022-03027-2