Ukrainian Antarctic Journal

Vol 23 No 1(30) (2025): Ukrainian Antarctic Journal
Articles

Microplastics in sediments of the waters near the Akademik Vernadsky station

Yevhen Nasiedkin
Institute of Geological Sciences of NAS of Ukraine, Kyiv, 01054, Ukraine; State Scientific Institution Center for Problems of Marine Ecology, Geoecology and Sedimentary Ore Formation of NAS of Ukraine, Kyiv, 01054, Ukraine
Oleksandra Olshtynska
Institute of Geological Sciences of NAS of Ukraine, Kyiv, 01054, Ukraine
Ganna Ivanova
Institute of Geological Sciences of NAS of Ukraine, Kyiv, 01054, Ukraine
Sergey Kadurin
Odesa Mechnikov National University, Odesa, 65082, Ukraine
Published July 29, 2025
Keywords
  • Antarctic Peninsula,
  • artificial polymers,
  • microscopic studies,
  • pollution,
  • Raman spectroscopy,
  • surface layer of bottom sediments
  • ...More
    Less
How to Cite
Nasiedkin, Y., Olshtynska, O., Ivanova, G., & Kadurin, S. (2025). Microplastics in sediments of the waters near the Akademik Vernadsky station. Ukrainian Antarctic Journal, 23(1(30), 3-18. https://doi.org/10.33275/1727-7485.1.2025.740

Abstract

Despite Antarctica's remoteness from powerful sources of anthropogenic impact, its natural environment undergoes changes due to the activities of scientific stations, tourism, transport communications, and the extraction of bioresources. The study presents the distribution of artificial polymer particles (microplastics) in the upper layer of the bottom sediments in the waters near the Akademik Vernadsky station. It aims to identify the microplastics in the geological components and to adapt the laboratory cycle of sample processing and particle identification. The samples were collected in 2022 during seasonal fieldwork at 4 to 60 m. In particular, sediment samples from sea straits at different distances from the Antarctic station were subject to testing. Most of the samples included microplastics; they were quantified and classified by morphology. The putative microplastics were tested by Raman spectroscopy (diffraction monochromator MDR-23); the test found such polymers as polypropylene, polyethylene, and polyethylene terephthalate. Some particles (mostly fibers) that morphologically could not be studied by spectrometry were identified as artificial polymers by thermal techniques without chemical analysis. The sediments' material and granulometric parameters were determined to understand the possible link of the microplastics in the upper sedimental layer with the natural and anthropogenic factors. The results were compared to similar studies at other polar stations on the Antarctic Peninsula. The small number of samples did not allow us to establish a qualitative relation between the depth distribution, sediments’ granulometry, and the total amounts of the confirmed microplastic fragments. Thus, the publication should be considered a preliminary review and a methodologically indicative study on the identification of microplastic particles in the bottom sediments of the water area adjacent to the Ukrainian Antarctic Station.

References

  1. Antacli, J. C., Di Mauro, R., Rimondino, G. N., Alurralde, G., Schloss, I. R., González, G. A., Morales, S., Ottero, A., & Vodopivez, C. (2024). Microplastic pollution in waters of the Antarctic coastal environment of Potter Cove (25 de Mayo Island/King George Island, South Shetlands). Science of The Total Environment, 915, 170155. https://doi.org/10.1016/j.scitotenv.2024.170155
  2. Balks, M. R., Paetzold, R. F., Kimble, J. M., Aislabie, J., & Campbell, I. B. (2002). Effects of hydrocarbons spills on the temperature and moisture regimes of Cryosols in the Ross Sea region. Antarctic Science, 14(4), 319–326. https://doi.org/10.1017/S0954102002000135
  3. Barnes, D. K. A., Walters, A., & Gonçalves, L. (2010). Macroplastics at sea around Antarctica. Marine Environment Research, 70(2), 250–252. https://doi.org/10.1016/j.marenvres.2010.05.006
  4. Cincinelli, A., Scopetani, C., Chelazzi, D., Martellini, T., Pogojeva, M., & Slobodnik, J. (2021). Microplastics in the Black Sea sediments. Science of The Total Environment, 760, 143898. https://doi.org/10.1016/j.scitotenv.2020.143898
  5. Cunningham, E. M., Ehlers, S. M., Dick, J. T. A., Sigwart, J. D., Linse, K., Dick, J. J., & Kiriakoulakis, K. (2020). High abundances of microplastic pollution in deepsea sediments: Evidence from Antarctica and the Southern Ocean. Environmental Science and Technology, 54(21), 13661–13671. https://doi.org/10.1021/acs.est.0c03441
  6. De-la-Torre, G. E., Forero López, A. D., Colombo, C. V., Rimondino, G. N., Malanca, F. E., Barahona, M., & Santillán, L. (2024). Low prevalence of microplastic contamination in the bottom sediments and deep-sea waters of the Bransfield strait, Antarctica. Chemosphere, 364, 143310. https://doi.org/10.1016/j.chemosphere.2024.143310
  7. Deprez, P. P., Arens, M., & Locher, H. (1999). Identification and assessment of contaminated sites at Casey Station, Wilkes Land, Antarctica. Polar Record, 35(195), 299–316. https://doi.org/10.1017/S0032247400015655
  8. De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K., & Robbens, J. (2014). Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Marine Pollution Bulletin, 85(1), 146–155. https://doi.org/10.1016/j.marpolbul.2014.06.006
  9. GESAMP (2019). Guidelines for the monitoring and assessment of plastic litter in the ocean (GESAMP Reports and Studies No. 99). Retrieved March 10, 2024 from http://www.gesamp.org/site/assets/files/2002/rs99e.pdf
  10. Iemelianov, V., Nasiedkin, Ye., Kukovska, T., Koshliakova, T., Fedoronchuk, N., Shuraiev, I., & Yukhymchuk, V. (2024). Exploring the microplastics distribution in the bottom sediments of the western Black Sea. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(107)/2024, 104–113. http://doi.org/10.17721/1728-2713.107.13
  11. Imhof, H. K., Schmid, J., Niessner, R., Ivleva, N. P., & Laforsch, C. (2012). A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods, 10(7), 524–537. https://doi.org/10.4319/lom.2012.10.524
  12. Isobe, A., Uchiyama-Matsumoto, K., Uchida, K., & Tokai, T. (2017). Microplastics in the Southern Ocean. Marine Pollution Bulletin, 114(1), 623–626. https://doi.org/10.1016/j.marpolbul.2016.09.037
  13. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352
  14. Klein, A. G., Sweet, S. T., Wade, T. L., Sericano, J. L., & Kennicutt, M. C. (2012). Spatial patterns of total petroleum hydrocarbons in the terrestrial environment at McMurdo Station, Antarctica. Antarctic Science, 24(5), 450–466. https://doi.org/10.1017/S0954102012000429
  15. Liebezeit, G., & Dubaish, F. (2012). Microplastics in beaches of the East Frisian Islands Spiekeroog and Kachelotplate. Bulletin of Environmental Contamination and Toxicology, 89(1), 213–217. https://doi.org/10.1007/s00128-012-0642-7
  16. Mariano, S., Tacconi, S., Fidaleo, M., Rossi M., & Dini, L. (2021). Micro and nanoplastics identification: Classic methods and innovative detection techniques. Frontiers in Toxicology, 3, 636640. https://doi.org/10.3389/ftox.2021.636640
  17. Markley, L. A. T., Driscoll, C. T., Hartnett, B., Mark, N., Mateos Cárdenas, A. M., & Hapich, H. R. (2024). Guide for the visual identification and classification of plastic particles. https://doi.org/10.13140/RG.2.2.27505.45927
  18. Masura, J., Baker, J. E., Foster, G. D., & Courtney, A. (2015). Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. https://repository.library.noaa.gov/view/noaa/10296
  19. MSFD Technical Subgroup on Marine Litter (2013). Guidance on monitoring of marine litter in European seas. Publications Office of the European Union, Luxembourg. https://mcc.jrc.ec.europa.eu/documents/201702074014.pdf
  20. MSFD Technical Group on Marine Litter (2023). Guidance on the monitoring of marine litter in European seas – An update to improve the harmonised monitoring of marine litter under the Marine Strategy Framework Directive. Publications Office of the European Union, JRC133594. https://doi.org/10.2760/59137
  21. Nasiedkin, Ye., Olshtynska, O., Ivanova, G., & Mytrofanova, O. (2022). Studying the suspended matter in Antarctic Peninsula coastal waters to understand the local geological and ecological processes. Ukrainian Antarctic Journal, 20(2(25), 135–150. https://doi.org/10.33275/1727-7485.2.2022.696
  22. Nuelle, M.-T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161–169. https://doi.org/10.1016/j.envpol.2013.07.027
  23. Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future, 2(6), 315–320. https://doi.org/10.1002/2014EF000240
  24. Reed, S., Clark, M., Thompson, R., & Hughes, K. A. (2018). Microplastics in marine sediments near Rothera Research Station, Antarctica. Marine Pollution Bulletin, 133, 460–463. https://doi.org/10.1016/j.marpolbul.2018.05.068
  25. Thompson, R. C. (2015). Microplastics in the marine environment: sources, consequences and solutions. In M. Bergmann, L. Gutlow, & M. Klages (Eds.), Marine Anthropogenic Litter (pp. 185–200). Springer Cham. https://doi.org/10.1007/978-3-319-16510-3_7
  26. Tin, T., Fleming, Z. L., Hughes, K. A., Ainley, D. G., Convey, P., Moreno, C. A., Pfeiffer, S., Scott, J., & Snape, I. (2009). Impacts of local human activities on the Antarctic environment. Antarctic Science, 21(1), 3–33. https://doi.org/10.1017/S0954102009001722
  27. Usenko, V. P., Mitropolskii, A. Yu., Osokina, N. P., & Nasedkin, Ye. I. (2007). The content of stable chlororganic pesticides in the bottom sediments of Antarctic seas. Geology and Mineral Resources of World Ocean, 4, 44–55. (In Russian)
  28. Vermeiren, P., Muñoz, C., & Ikejima, K. (2020). Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environmental Pollution, 262, 114298. https://doi.org/10.1016/j.envpol.2020.114298
  29. Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza, I., Moreno, B., Pacherres, C. O., & Hughes, K. A. (2017). Microplastics in the Antarctic marine system: An emerging area of research. Science of The Total Environment, 598, 220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283
  30. Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L. J., Coppock, R., Sleight, V., Calafat, A., Rogers, A. D., Narayanaswamy, B. E., & Thompson, R. C. (2014). The deep sea is a major sink for microplastic debris. The Royal Society Open Science, 1(4), 140317. http://dx.doi.org/10.1098/rsos.140317
  31. Yevchun, H., Dykyi, E., Kozeretska, I., Fedchuk, A., Karamushka, V., & Parnikoza, I. (2021). Minimizing tourist impact on the Argentine Islands ecosystem, Antarctic Peninsula, using visitor site guidelines approach. Ukrainian Antarctic Journal, 1, 98–116. https://doi.org/10.33275/1727-7485.1.2021.669