- non-uniform wind flow,
- polar thermosphere,
- waves in the atmosphere,
- wind filtering
Copyright (c) 2025 Ukrainian Antarctic Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
We investigated the properties of atmospheric gravity waves (AGW) in the areas of polar thermosphere wind systems using satellite measurement data. It was established that AGWs systematically propagate in the direction from night to day towards the wind. The dependence of the wave amplitude on the headwind wind velocity was studied. In an oncoming non-uniform wind flow, wave amplitudes increase due to energy exchange with the medium. As a result, such large-amplitude AGWs are predominant in observations in the polar thermosphere. Therefore, wind flow regions can be considered a source of energy for AGW. The frequencies of polar AGW were determined from satel lite measurements. The obtained frequency values for different polar orbits of the Dynamics Explorer 2 satellite are very close to the Brunt-Väisälä (BV) frequency. This indicates the filtering of the wave spectrum in the non-uniform wind flow. The results allow us to explain the main properties of AGW in the polar thermosphere observed from the satellite and compare them with ground-based measurements. When comparing the results of satellite and ground measurements of AGW characteristics, background atmospheric flows must be taken into account. Thus, the frequencies of AGW determined from satellite data are close to the Brunt-Väisälä frequency. However, a ground observer will register such waves as very low-frequency disturbances. It can be assumed that some of the observed cases of large-scale AGW are medium-scale disturbances propagating against the background of strong winds. Under increased geomagnetic activity, the speeds of polar vortices increase, accompanied by an increase in energy transfer from the wind. Therefore, AGWs play an important role in the energy balance of the polar atmosphere, redistributing the energy of disturbed wind flows in the vertical direction.
References
- Aruliah, A. L., Rees, D., & Fuller-Rowell, T. J. (1991). The combined effect of solar and geomagnetic activity on high-latitude thermospheric neutral winds. Part I. Observations. Journal of Atmospheric and Terrestrial Physics, 53(6–7), 467–483. https://doi.org/10.1016/0021-9169(91)90075-I
- Carignan, G. R., Block, B. P., Maurer, J. C., Hedin, A. E., Reber, C. A., & Spencer, N. W. (1981). The neutral mass spectrometer on Dynamics Explorer B. Space Science Instrumentation, 5, 429–441. https://ntrs.nasa.gov/citations/19820032902
- Crowley, G., & Williams, P. J. S. (1987). Observation of the source and propagation of atmospheric gravity waves. Nature, 328, 231–233. https://doi.org/10.1038/328231a0
- Deng, Y., & Ridley, A. J. (2006). Dependence of neutral winds on convection E-field, solar EUV, and auroral particle precipitation at high latitudes. Journal of Geophysical Research. Space Physics, 111(A9), A09306. https://doi.org/10.1029/2005JA011368
- Fedorenko, A. K. (2009). Determination characteristics of atmospheric gravity waves in the Polar regions using mass-spectrometer satellite measurements. Radio Physics and Radio Astronomy, 14(3), 254–266. http://rpra-journal.org.ua/index.php/ra/article/view/510 (In Ukrainian)
- Fedorenko, A. K., Bespalova, A. V., Cheremnykh, O. K., & Kryuchkov, E. I. (2015). A dominant acoustic-gravity mode in the polar thermosphere. Annales Geophysicae, 33(1), 101–108. https://doi.org/10.5194/angeo-33-101-2015
- Fedorenko, A. K., Kryuchkov, E. I., Cheremnykh, O. K., Klymenko, Yu. O., & Yampolski, Yu. M. (2018). Peculiarities of acoustic-gravity waves in inhomogeneous flows of the polar thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 178, 17–23. https://doi.org/10.1016/j.jastp.2018.05.009
- Fedorenko, A. K., Kryuchkov, E. I., Cheremnykh, O. K., & Melnychuk, S. V. (2024). Propagation of acoustic gravity waves in inhomogeneous wind flows of the polar atmosphere. Kinematics and Physics of Celestial Bodies, 40, 15–23. https://doi.org/10.3103/S0884591324010045
- Francis, S. H. (1975). Global propagation of atmospheric gravity waves: A review. Journal of Atmospheric and Terrestrial Physics, 37(6–7), 1011–1030. https://doi.org/10.1016/0021-9169(75)90012-4
- Hajkowicz, L. A. (1991). Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances. Planetary and Space Science, 39(8), 1189–1196. https://doi.org/10.1016/0032-633(91)90170-F
- Harvey, V. L., Randall, C. E., Goncharenko, L. P., Becker, E., Forbes, J. M., Carstens, J., Xu, S., France, J. A., Zhang, S.-R., & Bailey, S. M. (2023). CIPS observations of gravity wave activity at the edge of the polar vortices and coupling to the ionosphere. Journal of Geophysical Research: Atmospheres, 128(12), e2023JD038827. https://doi.org/10.1029/2023JD038827
- Hays, P. B., Killeen, T. L., & Kennedy, B. C. (1981). The Fabry-Perot interferometer on Dynamics Explorer. Space Science Instrumentation, 5(4), 395–416. https://ntrs.nasa.gov/citations/19820032900
- Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Canadian Journal of Physics, 38(11), 1441–1481. https://doi.org/10.1139/p60-150
- Hocke, K., & Schlegel, K. (1996). A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Annales Geophysicae, 14(9), 917–940. https://doi.org/10.1007/s00585-996-0917-6
- Innis, J. L., & Conde, M. (2002). Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data. Journal of Geophysical Research: Space Physics, 107(A12), SIA 1-1–SIA 1–22. https://doi.org/10.1029/2002JA009370
- Johnson, F. S., Hanson, W. B., Hodges, R. R., Coley, W. R., Carignan, G. R., & Spencer, N. W. (1995). Gravity waves near 300 km over the polar caps. Journal of Geophysical Research, 100(A12), 23993–24002.
- Killeen, T. L., Won, Y.-I., Niciejewski, R. J., & Burns, A. G. (1995). Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic field dependencies. Journal of Geophysical Research: Space Physics, 100(A11), 21327–21342. https://doi.org/10.1029/95JA01208
- Lighthill, J. (1978). Waves in Fluids. Cambridge University Press.
- Liu, H.-L., Lauritzen, P. H., & Vitt, F. (2024). Impacts of Gravity Waves on the Thermospheric Circulation and Composition. Geophysical Research Letters, 51(3), e2023GL107453. https://doi.org/10.1029/2023GL107453
- Lühr, H., Rentz, S., Ritter, P., Liu, H., & Häusler, K. (2007). Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Annales Geophysicae, 25(5), 1093–1101. https://doi.org/10.5194/angeo-25-1093-2007
- Moffat-Griffin, T. (2019). An introduction to atmospheric gravity wave science in the polar regions and first results from ANGWIN. Journal of Geophysical Research: Atmospheres, 124(3), 1198–1199. https://doi.org/10.1029/2019JD030247
- Nappo, C. J. (2012). An Introduction to Atmospheric Gravity Waves (2nd ed.). Elsevier Science.
- Negale, M. R., Taylor, M. J., Nicolls, M. J., Vadas, S. L., Nielsen, K., & Heinselman, C. J. (2018). Seasonal propagation characteristics of MSTIDs observed at high latitudes over Central Alaska using the Poker Flat Incoherent Scatter Radar. Journal of Geophysical Research: Space Physics, 123(7), 5717–5737. https://doi.org/10.1029/2017JA024876
- Paznukhov, V. V., Sopin, A. A., Galushko, V. G., Kashcheyev, A. S., Koloskov, A. V., Yampolski, Y. M., & Zalizovski, A. V. (2022). Occurrence and characteristics of traveling ionospheric disturbances in the Antarctic Peninsula region. Journal of Geophysical Research: Space Physics, 127(11), e2022JA030895. https://doi.org/10.1029/2022JA030895
- Rourke, S., Mulligan, F. J., French, W. J. R., & Murphy, D. J. (2017). A climatological study of short-period gravity waves and ripples at Davis Station, Antarctica (68 8.S,78.E), during the (austral winter February–October) period 1999–2013. Journal of Geophysical Research: Atmospheres, 122(21), 11,388–11,404. https://doi.org/10.1002/2017JD026998
- Spencer, N. W., Wharton, L. E., Niemann, H. B., Hedin, A. E., Carrignan, G. R., & Maurer, J. C. (1981). The Dynamics Explorer wind and temperature spectro meter. Space Science Instrumentation, 5(4), 417–428. https://ntrs.nasa.gov/citations/19820032901
- Thayer, J. P., Killeen, T. L., McCormac, F. G., Tschan, C. R., Ponthieu, J. J., & Spencer, N. W. (1987). Thermospheric neutral wind signatures dependent on the east-west component of the interplanetary magnetic field for Northern and Southern Hemispheres as measured by Dynamics Explorer-2. Annales Geophysicae Series A – Upper Atmosphere and Space Sciences, 5A. https://ntrs.nasa.gov/citations/19880035781
- Tsugawa, T., Saito, A., & Otsuka, Y. (2004). A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. Journal of Geophysical Research: Space Physics, 109(A6), A06302. https://doi.org/10.1029/2003JA010302
- Williams, P. J. S., Jones, B., & Jones, G. O. L. (1992). The measured relationship between electric field strength and electron temperature in the auroral E-region. Journal of Atmospheric and Terrestrial Physics, 54(6), 741–748. https://doi.org/10.1016/0021-9169(92)90112-X
- Zhang, S.-R., Erickson, P. J., Coster, A. J., Rideout, W., Vierinen, J., Jonah, O., & Goncharenko, L. P. (2019). Subauroral and polar traveling ionospheric disturbances during the 7–9 September 2017 storms. Space Weather, 17(12), 1748–1764. https://doi.org/10.1029/2019SW002325