Ukrainian Antarctic journal

No 1(18) (2019): Ukrainian Antarctic Journal

Low-frequency (ELF–VLF) radio atmospherics study at the Ukrainian Antarctic Akademik Vernadsky station

A. V. Shvets
A.Ya. Usikov Institute for Radiophysics and Electronics of National Academy of Sciences of Ukraine, 12 Akademik Proskura Str., Kharkiv, 61085, Ukraine
A. P. Nickolaenko
A.Ya. Usikov Institute for Radiophysics and Electronics of National Academy of Sciences of Ukraine, 12 Akademik Proskura Str., Kharkiv, 61085, Ukraine
A. V. Koloskov
Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 4 Mystetstv Str., Kharkiv, 61002, Ukraine, State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, 16 Taras Shevchenko Blvd., Kyiv, 01601, Ukraine
Yu. M. Yampolsky
Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 4 Mystetstv Str., Kharkiv, 61002, Ukraine
O. V. Budanov
Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 4 Mystetstv Str., Kharkiv, 61002, Ukraine
A. A. Shvets
A.Ya. Usikov Institute for Radiophysics and Electronics of National Academy of Sciences of Ukraine, 12 Akademik Proskura Str., Kharkiv, 61085, Ukraine
Published December 13, 2019
  • ELF transient,
  • single-site technique,
  • lightning location,
  • ELF-VLF radio waves,
  • Earth-ionosphere waveguide,
  • tweekatmospheric,
  • lower ionosphere
  • ...More


This paper describes the results of the atmospherics measurements in the extremely low-frequency (ELF) and very low-frequency (VLF) frequency ranges performed at the Akademik Vernadsky station (64.26W; 65.25S) during February–April 2019. The main objective of the study was the implementation of a single-site technique for monitoring the lower ionosphere parameters and locating globally distributed powerful lightning discharges. Methods. The receiving and analyzing VLF complex was used at the station to record two horizontal magnetic and vertical electric components of atmospherics in the frequency range 750 Hz – 24 kHz. A single-site lightning location method is based on the analysis of tweek-atmospherics (tweeks).It was implemented in the receiving system software. This allowed obtaining real-time information about lightning position, height and electron density variations in the lower ionosphere.The records of VLF atmospherics were synchronized via GPS timestamps with records of ELF transients resulted from globally distributed powerful lightning discharges. Results of analysis of tweeks recorded at the Akademik Vernadsky station indicates that lightning discharges are registered at distances from 2,000 km to about 10,000 km within the azimuthal sector, covering almost the entire South American continent, southern Africa and the Gulf of Guinea. Practically, no tweeks from the Pacific were recorded. This can be attributed to the non-reciprocity of attenuation of radio waves propagating in the west-east and east-west directions. In addition to the fundamental mode, we observed also the second and higher order modes of tweeks. This allowed estimating the lower boundary altitude and the electron density in the lower ionosphere. We demonstrated the advantages of simultaneous recordings of VLF atmospherics and ELF transients. Employing the vertical electric and two horizontal magnetic components measured by the VLF complex allowed for more accurate and unambiguous determining the source azimuth and resolving polarity of the charge transfer in the parent lightning discharges. Combining the ELF and VLF records, we can determine a distance to lightning and, then, parameters of the current moment of the lightning discharge. Conclusions. The performed experimental studies has shown the prospect of further combined ELF–VLF monitoring at the Akademik Vernadsky station, enabling detection of globally distributed powerful lightning discharges and changes in the lower ionosphere related to various phenomena of space weather, atmospheric and of terrestrial origin.


  1. Abarca, S. F., Corbosiero, K. L., Galarneau, T. J. 2010. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. Journal of Geophysical Research, 115(D18206).
  2. Abreu, D., Chandan, D., Holzworth, R. H., Strong, K. 2010. A performance assessment of the World Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN). Atmos. Measure. Techniques, 3(4), 1143-1153.
  3. Biagi, C. J., Cummins, K. L., Kehoe, K. E., Krider, E. P. 2007. National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003-2004. Journal of Geophysical Research, 112(D05208).
  4. Boccippio, D. J.,Williams, E.R., Heckman, S.J., Lyons, W.A., Baker, I.T., Boldi, R. 1995. Sprites, ELF transients and positive ground strokes. Science, 269, 1088 - 1091.
  5. Brundell, J.B., Rodger, C.J., Dowden, R.L. 2002. Validation of single-station lightning location technique. Radio Sci., 37 (4).
  6. Burke, C. P., Jones, D. L. 1996. On the polarity and continuing currents in unusually large lightning flashes deduced from ELF events. Journal of Atmospheric and Terresfrial Physics, 58(5), 531-540.
  7. Chrissan, D.A., Fraser-Smith, A.C. 1996. Seasonal Variations of Globally Measured ELF / VLF Radio Noise. Technical Report D177-1. Stanford University Dept. Of Electrical Engineering, STAR Lab.
  8. Chrissan, D.A., Fraser-Smith, A.C. 1996. Seasonal Variations of Globally Measured ELF / VLF Radio Noise. Radio Science, 31(5), 1141-1152.
  9. Ester, M., Kriegel, H.-P., Sander, J., Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96). 226-231.
  10. Cummer, S. A., Inan, U. S. 1997. Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics. Geophysical Research Letters, 24, 1731-1734.
  11. Cummer, S. A., Inan, U. S., Bell, T. F., Barrington-Leigh, C. P. 1998. ELF Radiation Produced by Electrical Currents in Sprites. Geophysical Research Letters, 25(8), 1281-1284.
  12. Cummins, K. L., Murphy, M. J., Bardo, E. A., Hiscox, W. L., Pyle, R. B., Pifer, A. E. 1998. A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 9035-9044.
  13. Cummins, K. L., Cramer, J. A., Biagi, C. J., Krider, E. P., Jerauld, J., Uman, M. A., Rakov, V. A. 2006. The U. S. National Lightning Detection Network: Post-upgrade status. Second Conference on Meteorological Applications of Lightning Data. Am. Meteorol. Soc., Atlanta, Ga., 29 Jan. to 2 Feb.
  14. Friedrich, M., Pock, C., Torkar, K. 2018. FIRI-2018, an updated empirical model of the lower ionosphere. Journal of Geophysical Research: Space Physics, 123, 6737-6751.
  15. Füllekrug, M., Reising, S.C., Lyons, W. A. 1996. On the accuracy of arrival azimuth determination of sprite-associated lightning flashes by Earth-ionosphere cavity resonances. Geophys. Res. Lett., 23(25), 3691−3694.
  16. Füllekrug, M., Constable, S. 2000. Global triangulation of lightning discharges. Geophys. Res. Lett., 27, 333−336.
  17. Füllekrug, M., Constable, S., Heinson, G., Sato, M., Takahashi, Y., Price, C., Williams, E. 2000. Global lightning acquisition system installed. EOS Trans AGU 81(30):333.
  18. Gorishnya Y. V. 2014. Electron density and lower ionosphere height estimations by results of analysis of multimodal tweek-atmospherics. Radiophysics and electronics, 19(1), 20-28. (In Russian).
  19. Huang, E., Williams, E., Boldi, R., Heckman, S., Lyons, W., Taylor, M., Nelsonfi,T., Won, C. 1999. Criteria for sprites and elves based on Schumann resonance observations. Journal of Geophysical Research, 104(D14), 16,943 -16,964.
  20. Hutchins, M.L., Holzworth, R. H., Brundell, J. B., Rodger, C. J. 2012. Relative detection efficiency of the World Wide Lightning Location Network. Radio Science, 47 (RS6005).
  21. Kemp, D.T., Jones, D. Ll. 1971. A new technique for analysis of transient ELF electromagnetic disturbances within the Earth−ionosphere cavity. J. Atmos. Terr. Phys., 33, 567−572.
  22. Kemp, D.T. 1971. The global location of large lightning discharges from single station observations of ELF disturbances in the Earth−ionosphere cavity. J. Atmos. Terr. Phys., 33, 919−928.
  23. Koloskov, A. V., Budanov, O. V., Bezrodny, V. G., Yampolski, Yu. M. 2004. Location of Superpowerful Lightning Flashes through Polarization Magnetic Measurements in Schumann Resonance Waveband. Radio Physics and Radio Astronomy, 9(4), 391-403.
  24. Lazebny, B.V., Nickolaenko, A.P. 1976. Synchronous observations of the ELF bursts in the frequency range of the Schumann resonances. Geomagnetism and Aeronomia, 16(1), 121-126, (in Russian).
  25. Nickolaenko, A. P., Hayakawa, M., Ogawa, T., Komatsu, M. 2008. Q-bursts: A comparison of experimental and computed ELF waveforms. Radio Sci., 43(RS4014).
  26. Nickolaenko, A.P., Hayakawa, M. 2002. Resonances in the Earth-ionosphere cavity. Kluwer Academic Publishers, Dordrecht-Boston-London.
  27. Nickolaenko A., Hayakawa, M. 2014. Schumann Resonance for Tyros (Essentials of Global Electromagnetic Resonance in the Earth-Ionosphere Cavity). Springer Geophysics Series XI. Springer Tokyo Heidelberg New York Dordrecht London.
  28. Nickolaenko, A.P., Shvets, A.V., Hayakawa, M. 2016. Extremely Low Frequency (ELF) Radio Wave Propagation: A review. International Journal of Electronics and Applied Research (IJEAR), 3(2), 1-91.
  29. Ogawa, T., Tanaka, Y., Fraser-Smith, A.C., Gendrin, R. 1967. Worldwide simultaneity of a Q−burst in the Schumann resonance frequency range. J. Geomagn. Geoelectr., 19, 377−384.
  30. Ogawa, T, Komatsu, M. 2007. Analysis of Q-burst waveforms. Radio Sci., 42(RS2S18).
  31. Ogawa, T, Komatsu, M. 2009. Q-bursts from various distances on the Earth. Atmospheric Research, 538-545.
  32. Orville, R. E., Huffines, G. R. 2001. Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989-98. Mon.Weather Rev., 129, 1179-1193.<1179:CTGLIT>2.0.CO;2
  33. Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., Cummins, K. L. 2002. The North-American Lightning Detection Network (NALDN)-First results: 1998-2000. Mon. Weather Rev., 130, 2098-2109.<2098:TNALDN>2.0.CO;2
  34. Price, C., Asfur, M., Lyons, W., Nelson, T. 2002. Improved ELF/VLF method for globally geolocating spriteproducing lightning. Geophys. Res. Lett., 29, 1031.
  35. Rafalsky, V.A., Nickolaenko, A. P., Shvets, A. V., Hayakawa, M. 1995. Location of lightning discharges from a single station. J. Geoph. Res., 100(D10), 20,829-20,838.
  36. Rafalsky, V. A., Shvets, A. V., Hayakawa, M. 1995. Onesite distance-finding technique for locating lightning discharges. J. Atmos. Terr. Phys., 57, 1255-1261.
  37. Ryabov, B. S. 1994. Tweek formation peculiarities. Geomagnetism And Aeronomy. English Translation, 34(1), Russian Edition: January-February 1994, 60-66.
  38. Sato, M., Fukunishi, H. 2003. Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events. Geophys. Res. Lett., 30(16), 1859.
  39. Sato, M., Takahashi, Y., Yoshida, A., Adachi, T. 2008. Global distribution of intense lightning discharges and their seasonal variations. Journal of Physics D: Applied Physics, 41, 234011 (10pp).
  40. Shvets, A. V., Gorishnyaya, Y. V. 2011. Lightning location and estimation of the lower ionosphere effective height using dispersion properties of tweek-atmospherics. Radiophysics and Electronics, 16(4), 53-59, (In Russian).
  41. Shvets, A. V., Serdiuk, T. M., Gorishnyaya, Y. V., Hobara, Y., Hayakawa, M. 2014. Estimating the lower ionosphere height and lightning location using multimode "tweek"-atmospherics. JASTP, 108. 1 - 9.
  42. Shvets, A.V., Krivonos, A.P., Serdiuk, T.N., Hayakawa, M. 2017. A Technique for Automatic Monitoring the Lower Ionosphere and Lightning Location by Tweek-Atmospherics. International Journal of Electronics and Applied Research (IJEAR), 4(1), 37-51.
  43. Shvets, A.V., Krivonos, A.P., Ivanov, V.K. 2016. A complex for multicomponent measurements of the ELF-VLF electromagnetic fields. Radiophysics and electronics, 7(21), 4. 49-55. (In Russian).
  44. Shvets, A.V., Serdiuk, T., Krivonos, A., Hayakawa, M. 2018. Automatic method for monitoring the lower ionosphere and lightning location by tweek-atmospherics. Proc. of the 2018 International Symposium on Electromagnetic Compatibility (EMC Europe 2018). Amsterdam, The Netherlands, August 27-30, 2018, 789-794.
  45. Shvets, O.V., Nickolaenko, O.P., Koloskov, O.V., Yampolski, Y.M., Budanov, O.V., Shvets, A.O. 2019. First results of observations of tweek atmospherics at Akademik Vernadsky station. IX IAC 2019, Kyiv, Ukraine, 14-16 May, 2019. 176-178.
  46. Shvets, A.V., Krivonos, A.P. 2017. Preliminary results of monitoring the lower ionosphere based on the analysis of tweek-atmospherics. Radiophysics and electronics, 22(3), 14-22. (In Russian).
  47. Sukhorukov, A. I., Shimakura, S., Hayakawa, M. 1992. Approximate solution for the VLF eigenvalues near cutoff frequencies in the nocturnal inhomogeneous Earth-ionosphere waveguide. Planet. Space Sci., 40(10), 1363-1369.
  48. Sukhorukov, A. I., Shimakura, S., Hayakawa, M. 1992. On The Additional Dispersion of a Whistler in the Earth-Ionosphere Waveguide. Planet. Space Sci., 40(9), 1185-1191.
  49. Sukhorukov, A.I. 1996. ELF-VLF atmospheric waveforms under night-time ionospheric conditions. Annales Geophysicae, 14, 33-41.
  50. Yamashita, M. 1978. Propagation of tweek atmospherics. Journal of Atmospheric and Terrestrial Physics, 40. 151-156.
  51. Yatsevich, E.I, Shvets, A. V., Nickolaenko, A.P. 2014. Impact of the ELF Receiver on Characteristics of the Observed Q-bursts. Radiophysics and Quantum Electronics, 57(3), 176-186.