No 1(18) (2019): Ukrainian Antarctic Journal
Articles

Preliminary comparison of the direct aerosol radiative forcing over Ukraine and Antarctic AERONET sites

G. Milinevsky
National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, 16 Taras Shevchenko Blvd., Kyiv, 01601, Ukraine,College of Physics, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, 130012, China, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St., Kyiv, 01601, Ukraine, Main Astronomical Observatory of Ukraine, National Academy of Sciences of Ukraine, 27 Akad. Zabolotnogo Str., Kyiv, 03143, Ukraine,
Yu. Yukhymchuk
Main Astronomical Observatory of Ukraine, National Academy of Sciences of Ukraine, 27 Akad. Zabolotnogo Str., Kyiv, 03143, Ukraine, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauka Ave, Kyiv, 03028, Ukraine
A. Grytsai
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St., Kyiv, 01601, Ukraine
V. Danylevsky
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St., Kyiv, 01601, Ukraine
Yu. Wang
College of Physics, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, 130012, China
V. Choliy
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St., Kyiv, 01601, Ukraine
Published December 13, 2019
Keywords
  • aerosol optical thickness,
  • aerosol radiative forcing,
  • AERONET,
  • GAME code

Abstract

Objectives. To analyze data on aerosol optical thickness (AOT) in the atmosphere over some Ukraine and Antarctic AERONET (AErosol RObotic NETwork) sites. To determine and compare direct aerosol radiative forcing (DRF) typical values using the data from midlatitude and Antarctic AERONET sites. Methods. Retrieval and visualization of the AERONET aerosol optical thickness and radiative forcing, data analysis and interpretation of the data. Radiative forcing evaluation using Global Atmospheric ModEl (GAME) and the AERONET operational product. Results. Aerosol optical thickness measurements are considered using observations by sun/sky photometers that are part of the AERONET sites in Ukraine (Kyiv) and at two additional sites in Antarctica (Vechernaya Hill and ARM_McMurdo sites). According to the 2015–2018 measurements at the Vechernaya Hill and ARM_McMurdo sites, the AOT values are small and are in the range of 0.05–0.1 at the 340 nm wavelength. In contrast, the corresponding AOT values from Kyiv observational site are reached 0.3–0.5 and sometimes higher. Using these AOT values from Kyiv site and the urban aerosol types, the aerosol direct radiative forcing has been evaluated by the GAME code. The top of atmosphere (TOA) DRF assessment using GAME suggests the instantaneous values of –5.7 W m–2 over vegetation surface for AOT equal 0.1. Conclusions. The AERONET derived aerosol optical thicknesses over Kyiv site show the mean value of 0.3 at 340 nm; the values over two Antarctic sites are in range of 0.03 to 0.06. Calculations using a numerical code (GAME) suggested the associated TOA instantaneous DRF of –6 W m–2 to –14 W m–2 over the Kyiv site. The values calculated as part of the AERONET Kyiv site operational product are about –20 W m–2 (BOA) and about –10 W m–2 (TOA) during 2018.

References

  1. Andreae, M. O. 2019. Emission of trace gases and aerosols from biomass burning - an updated assessment, Atmos. Chem. Phys., 19, 8523-8546. https://doi.org/10.5194/acp-19-8523-2019
  2. Bassani, C., Cavalli, R.M., Antonelli, P. 2012. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance. Atmos. Meas. Tech., 5, 1193-1203. https://doi.org/10.5194/amt-5-1193-2012
  3. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y. 2013. Clouds and Aerosols. In Stocker, T.F. et al. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  4. Bovchaliuk, V., Milinevsky, G., Danylevsky, V., Goloub, Ph., Sosonkin, M., Yukhimchuk, Yu., Podvin, T. 2017. Aerosol properties in atmosphere over Kyiv using lidar and sun-photometer observations. Space Sci. Technol., 23(6), 34-45. https://doi.org/10.15407/knit2017.06.034
  5. Brasseur, G.P., Solomon, S. (eds.). 2005. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Third Edition. Springer. 644. https://doi.org/10.1007/1-4020-3824-0
  6. Chubarova, N., Nezval', Ye., Sviridenkov, I., Smirnov, A., and Slutsker, I. 2012. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010. Atmos. Meas. Tech., 5, 557-568. https://doi.org/10.5194/amt-5-557-2012
  7. Committee on Radiative Forcing Effects on Climate, Climate Research Committee, Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies. 2005. Radiative Forcingof Climate Change: Expanding the Concept and Addressing Uncertainties. The National Academies Press, Washington. 224.
  8. Derimian, Y., Dubovik, O., Tanre, D., Goloub, P., Lapyonok, T., &Mortier, A. 2012. Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010. J. Geophys. Res: Atmospheres, 117(D20). https://doi.org/10.1029/2011JD016815
  9. Derimian, Y., Dubovik, O., Huang, X., Lapyonok, T., Litvinov, P., Kostinski, A. B., Dubuisson, P., and Ducos, F. 2016. Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics. Atmos. Chem. Phys., 16, 5763-5780. https://doi.org/10.5194/acp-16-5763-2016
  10. Dubovik, O. and King, M.D. 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research, 105, 20673-20696. https://doi.org/10.1029/2000JD900282
  11. Dubuisson, P., Buriez, J.C., Fouquart, Y. 1996. High spectral resolution solar radiative transfer in absorbing and scattering media application to the satellite simulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 55(1), 103-126. https://doi.org/10.1016/0022-4073(95)00134-4
  12. Dubuisson, P., Roger, J.-C., Mallet, M., Dubovik, O. 2006. A code to compute the direct solar radiative forcing: application to anthropogenic aerosols during the ESCOMPTE experiment. In: Fisher, S., Sohn, B.-J. (eds). IRS2004: Current problems in atmospheric radiation, 127-130.
  13. Fountoulakis, I., Natsis, A., Siomos, N., Drosoglou, T., Bais, A.F. 2019. Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece. Remote Sens., 11, 2179. https://doi.org/10.3390/rs11182179
  14. Galytska, E., Danylevsky, V., Hommel, R., Burrows, J.P. 2018. Increased aerosols content in the atmosphere over Ukraine during summer 2010. Atmos. Meas. Tech., 11, 2101-2118. https://doi.org/10.5194/amt-11-2101-2018
  15. Garcia, O. E., Diaz, J. P., Exposito, F. J., Diaz, A. M., Dubovik, O., Derimian, Y., Dubuisson, P., Roger, J.-C. 2012. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos. Chem. Phys., 12, 5129-5145. https://doi.org/10.5194/acp-12-5129-2012
  16. Giles, David M., Sinyuk, Alexander, Sorokin, Mikhail G., Joel S. Schafer, Alexander Smirnov, Ilya Slutsker, Thomas F. Eck, Brent N. Holben, Jasper R. Lewis, James R. Campbell, Ellsworth J. Welton, Sergey V. Korkin, and Alexei I. Lyapustin. 2019. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmospheric Measurement Techniques, 12 (1), 169-209. https://doi.org/10.5194/amt-12-169-2019
  17. Halthore, R.N., Crisp, D., Schwartz, S.E., Anderson, G.P., Berk, A., Bonnel, B., Boucher, O., Chang, F.-L., Chou, M.-D., Clothiaux, E.E., Dubuisson, P., Fomin, B., Fouquart, Y., Freidenreich, S., Gautier, C., Kato, S., Laszlo, I., Li, Z., Mather J.H., Plana-Fattori, A., Ramaswamy, V., Ricchiazzi, P., Shiren, Y., Trishchenko, A., Wiscombe, W. 2005. Intercomparison of shortwave radiative transfer codes and measurements. J. Geophys. Res., 110, D11206. https://doi.org/10.1029/2004JD005293
  18. Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, Ja., Perlwitz, Ju., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S. 2005. Efficacy of climate forcings. J. Geophys. Res., 110, D18104. https://doi.org/10.1029/2005JD005776
  19. Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A. 1998. AERONET - A federated instrument network and data archive for aerosol characterization. Rem. Sens. Env., 66(1), 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  20. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/SROCC_FinalDraft_FullReport.pdf (accessed: 12.09.2019).
  21. Kudo, R., Nishizawa, T., Aoyagi, T. 2016. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining skyradiometer and lidar measurements. Atmos. Meas. Tech., 9, 3223-3243. https://doi.org/10.5194/amt-9-3223-2016
  22. Laing, J.R., Jaffe, D.A., Hee, J.R. 2016. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmos. Chem. Phys., 16, 15185-15197. https://doi.org/10.5194/acp-16-15185-2016
  23. Larsen, J.N., Anisimov, O.A., Constable, A., Hollowed, A.B., Maynard, N., Prestrud, P., Prowse, T.D., and Stone, J.M.R. 2014. Polar regions. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1567-1612.
  24. Liao, H., Seinfeld, J. H., Adams, P. J., Mickley, L. J. 2004. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J. Geophys. Res., 109, D16207. https://doi.org/10.1029/2004JD005476
  25. Menut, L., Siour, G., Mailler, S., Couvidat, F., Bessagnet, B. 2016. Observations and regional modeling of aerosol speciation and size distribution over Africa and Europe. Atmos. Chem. Phys., 16, 12961-12982. https://doi.org/10.5194/acp-16-12961-2016
  26. Milinevsky, G., Danylevsky, V., Bovchaliuk, V., Bovchaliuk, A., Goloub, Ph., Dubovik, O., Kabashnikov, V., Chaikovsky, A., Miatselskaya, N., Mishchenko, M., and Sosonkin, M. 2014. Aerosol seasonal variations over urban-industrial regions in Ukraine according to AERONET and POLDER measurements. Atmos. Meas. Tech., 7, 1459-1474. https://doi.org/10.5194/amt-7-1459-2014
  27. Milinevsky, G., Danylevsky, V. 2018. Atmospheric Aerosol Over Ukraine Region: Current Status of Knowledge and Research Efforts. Front. Environ. Sci., 6, 59. https://doi.org/10.3389/fenvs.2018.00059
  28. Myhre, G., Aas, W., Cherian, R., Collins, W., Faluvegi, G., Flanner, M., Forster, P., Hodnebrog, Ø., Klimont, Z., Lund, M. T., Mülmenstädt, J., Lund Myhre, C., Olivié, D., Prather, M., Quaas, J., Samset, B. H., Schnell, J. L., Schulz, M., Shindell, D., Skeie, R. B., Takemura, T., and Tsyro, S. 2017. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015. Atmos. Chem. Phys., 17, 2709-2720. https://doi.org/10.5194/acp-17-2709-2017
  29. Pere, J. C., Bessagnet, B., Mallet, M., Waquet, F., Chiapello, I., Minvielle, F., Pont, V., Menut, L. 2014. Direct radiative effect of the Russian wildfires and its impact on air temperature and atmospheric dynamics during August 2010. Atmos. Chem. Phys., 14. 1999 -2013. https://doi.org/10.5194/acp-14-1999-2014
  30. Pey, J., Querol, X., Alastuey, A., Forastiere, F., and Stafoggia, M. 2013. African dust outbreaks over the Mediterranean Basin during 2001-2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos. Chem. Phys., 13, 1395-1410. https://doi.org/10.5194/acp-13-1395-2013
  31. Ridley, D.A., Heald, C.L., Kok, J.F., Zhao, Ch. 2016. An observationally-constrained estimate of global dust aerosol optical depth. Atmos. Chem. Phys., 16, 15097-15117. https://doi.org/10.5194/acp-16-15097-2016
  32. Salvador, P., Alonso-Pérez, S., Pey, J., Artíñano, B., de Bustos, J. J., Alastuey, A., and Querol, X. 2014. African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas. Atmos. Chem. Phys., 14, 6759-6775. https://doi.org/10.5194/acp-14-6759-2014
  33. Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R. S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G. H., Myhre, C. L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., Hi llamo, R., Strom, J., Toledano, C., Cachorro, V. E., Ortiz, P., de Frutos, A. M., Blindheim, S., Frioud, M., Gausa, M., Zielinski, T., Petelski, T., and Yamanouchi, T. 2007. Aerosols in polar regions: A historical overview based on optical depth and in situ observations. J. Geophys. Res., 112, D16205. https://doi.org/10.1029/2007JD008432
  34. Tomasi, C., Lupi, A., Mazzola, M., Stone, R. S., Dutton, E. G., Herber, A., Radionov, V. F., Holben, B. N., Sorokin, M. G., Sakerin, S. M., Terpugova, S. A., Sobolewski, P. S., Lanconelli,C., Petkov, B. H., Busetto, M., and Vitale, V. 2012. An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year. Atmospheric Environment, 52, 29-47. https://doi.org/10.1016/j.atmosenv.2012.02.055
  35. Vakkari, V., Kerminen, V.-M., Beukes, J.P., Tiitta, P., van Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Worsnop, D.R., Kulmala, M., Laakso, L. 2014. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett., 41(7), 2644-2651. https://doi.org/10.1002/2014GL059396
  36. Waquet, F., Peers, F., Goloub, P., Ducos, F., Thieuleux, F., Derimian, Y., Riedi, J., Chami, M., and Tanré, D. 2014. Retrieval of the Eyjafjallajökull volcanic aerosol optical and microphysical properties from POLDER/PARASOL measurements. Atmos. Chem. Phys., 14, 1755-1768. https://doi.org/10.5194/acp-14-1755-2014
  37. Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Yan, Q., Zheng, H., Yang, G., Zheng, M., Liu, D., Zhao, D., and Qi, S. 2018. Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation. Atmos. Chem. Phys., 18, 11623-11646. https://doi.org/10.5194/acp-18-11623-2018