No 2(19) (2019): Ukrainian Antarctic Journal
Articles

Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019

Kh. I. Marusazh
Institute of Geodesy, Lviv Polytechnic National University, 6 Karpinskogo Str., Lviv, 79013, Ukraine, State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, 16 Taras Shevchenko Blvd., Kyiv, 01601, Ukraine
V. M. Hlotov
Institute of Geodesy, Lviv Polytechnic National University, 6 Karpinskogo Str., Lviv, 79013, Ukraine
Z. Siejka
University of Agriculture in Krakow, Adam Mickiewicz Alley 21, 31—120, Krakow, Poland
Published January 22, 2020
Keywords
  • glacier,
  • terrestrial laser scanning,
  • stereophotogrammetry

Abstract

The work presents an analysis of climate variability and glaciological changes of the Antarctic Peninsula and the results of glacier monitoring on Galindez Island and Winter Island (the Argentine Islands in the Wilhelm Archipelago, Antarctic Peninsula) in 2018—2019. The main objective of research was to determine how the volumes of glaciers changed in 2018—2019 in the course of a complex study. Methods. The material of the Ukrainian seasonal expedition of 2018—2019 was used: terrestrial laser scanning data of 2018, terrestrial digital photography of 2018 and 2019 and an unmanned aerial vehicle survey of 2019. The technique used to determine changes in the volumes of glaciers can significantly improve both the speed and accuracy of the measurements. It included complementary processing of scanning data and digital photography of 2018, and digital photography and aerial survey of 2019. Results. Changes in the volumes of glaciers were 36 000 m3 for the western part of the glacier on Galindez Island, 1 100 m3 for the southern part of the glacier on Galindez Island, and 9 800 m3 for the southern part of the glacier on Winter Island. Conclusions. The results demonstrate significant changes since 2002. This is confirmed quantitatively by independent studies of the West of the peninsula. Monitoring of the dynamics of glacier volumes enables detection of climatic and glaciological changes in the Antarctic region.

References

  1. Antarctic Meteorology Online from the British Antarctic Survey. https://legacy.bas.ac.uk/met/READER/surface/ (last accessed: 19 November 2019).
  2. Bakhmutov, V. G., Vashchenko, V. N., Grishchenko, V. F., Korchagin, I. N., Levashov, S.V., Pishchanyi I. N. 2006. Metody i rezul'taty izmerenij moshhnosti lednikov Malyj Uiggjens (Antarkticheskij poluostrov) i Domashnij (ostrov Galindez) [Methods and results of glaciers' Malyi Wiggins (the Antarctic penninsula) and Domashnii (Galindez Island) thikness measurements]. Ukraїns'kij antarktichnij zhurnal [Ukrainian Antarctic Journal], 4-5, 47-51.
  3. Cisak, J., Milinevsky, G., Danylevsky, V., Glotov, V., Chizhevsky, V., Kovalenok, S., Olijnyk, A., Zanimonskiy, Y. 2008. Atmospheric impact on GNSS observations, sea level change investigations and GPS-photogrammetry ice cap survey at Vernadsky Station in Antarctic Peninsula. In CAPRA, A. And DIETRICH, R., eds. Geodetic and geophysical observations in Antarctica. Berlin: Springer, 191-209. https://doi.org/10.1007/978-3-540-74882-3_11
  4. Chernov, A., Lamsters, K., Karušs, J., Krievāns, M., Otruba, Y. 2018. A Brief Review of Ground Penetrating Radar Investigation Results of Ice Caps on Galindez, Winter and Skua Islands (Wilhelm Archipelago, Antarctica) for the Period April 2017 - January 2019. Ukrainian Antarctic Journal, 1 (17), 40-47. http://uaj.uac.gov.ua/index.php/uaj/article/view/30 (last accessed: 19 November 2019). https://doi.org/10.33275/1727-7485.1(17).2018.30
  5. Cook, A. J., Fox, A. J., Vaughan, D. G., Ferrigno, J. G. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721), 541-544. https://science.sciencemag.org/content/308/5721/541 (last accessed: 19 November 2019). https://doi.org/10.1126/science.1104235
  6. Cook, A. J., Vaughan, D. G., Luckman, A. J., Murray, T. 2014. A new Antarctic Peninsula glacier basin inventory and observed area changes since the 1940s. Antarctic Science, 26 (6), 614-624. https://www.cambridge.org/core/journals/antarctic-science/article/new-antarctic-peninsula-glacierbasin-inventory-and-observed-area-changes-since-the-1940s/7FCABBCABE30589E457B3C89D9A00A98 (last accessed: 19 November 2019). https://doi.org/10.1017/S0954102014000200
  7. Delta/Digitals. URL: http://www.vinmap.net/ (last accessed: 19 November 2019).
  8. FARO Laser Scanner Focus 3D, 2010. URL: http://www.faro.in.ua/focus%20S120.html. (last accessed: 19 November 2019).
  9. Faro Scene Software. URL: https://www.faro.com/products/construction-bim/faro-scene/ (last accessed: 19 November 2019).
  10. GML C++ Camera Calibration Toolbox. URL: https://graphics.cs.msu.ru/ru/research/projects/3dreconstruction/cppcalibration (last accessed: 19 November 2019).
  11. Hlotov, V. B., Kovalionok, S. Chyzhevskyj, V. 2004. Kilkisni parametry ostrivnyh liodovykiv za rezultatamy cyfrovogo stereofotogrammetrychnogo znimannja [Numerical parameters of Island glaciers obtained using digital stereophotogrammetry]. Ukrainskyj antarktychnyj zhurnal [Ukrainian Antarctic Journal], 2, 58-65. URL: http://dspace.nbuv.gov.ua/handle/123456789/128149 (last accessed: 19 November 2019).
  12. Karušs, J., Lamsters, K., Chernov, A., Krievāns, M., Ješkins, Ju. 2019. Subglacial topography and thickness of ice caps on the Argentine Islands. Antarctic Science, 31 (6), 332-344. https://doi.org/10.1017/S0954102019000452.
  13. Kunz, M., King, M. A., Mills, J. P., Miller, P. E., Fox, A. J., Vaughan, D. G., Marsh, S. H. 2012. Multi-decadal glacier surface lowering in the Antarctic Peninsula. Geophysical Research Letters, 39 (19). https://doi:10.1029/2012GL052823, 2012.
  14. Levashov, S.P, Yakymchuk, N.A., Usenko, V.P., Korchagin, I.N., Solovyov, V.D., Pishchany, Y.M. 2004. Determination of the Galindez Island ice cap thickness by the vertical electric-resonance sounding method. Ukrainian Antarctic Journal, 2, 38-43.
  15. Osmanoğlu, B., Navarro Valero, F. J., Hock, R., Braun, M., Corcuera Labrado, M. I. 2014. Surface velocity and mass balance of Livingston Island ice cap, Antarctica. The Cryosphere, 8 (5), 1807-1823. https://www.the-cryosphere.net/8/1807/2014/ (last accessed: 19 November 2019). https://doi.org/10.5194/tc-8-1807-2014
  16. Pix4Dmapper. URL: pix4d.com/product/pix4dmapperphotogrammetry-software (last accessed: 19 November 2019).
  17. Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., Morlighem, M. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proceedings of the National Academy of Sciences, 116 (4), 1095-1103. https://www.pnas.org/content/116/4/1095 (last accessed: 19 November 2019). https://doi.org/10.1073/pnas.1812883116
  18. Rosa, K.K., Vieira, R., Fernandez, G., Mendes, C.W., Velho, L.F., Simões, J.C. 2015. Recent changes in the Wanda Glacier, King George Island, Antarctica. Pesquisas em Geociências, 42 (2), 187-196. https://doi.org/10.22456/1807-9806.78119. https://doi.org/10.22456/1807-9806.78119
  19. Seredovych, V. A., Komyssarov, A. V., Komyssarov, D. V., Shyrokova, T. A. 2009. Nazemnoe lazernoe skanyrovanye [Terrestrial laser scanning]. 261.
  20. Shepherd, A., Ivins, E.R., Geruo, A, Barletta, V.R., Bentley, M.J., Bettadpur, S., Briggs, K.H., Bromwich, D.H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M.A., Lenaerts, J.T., Li, J., Ligtenberg, S.R., Luckman, A., Luthcke, S.B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J.P., Paden, J., Payne, A.J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L.S., Scambos, T.A., Scheuchl, B., Schrama, E.J., Smith, B., Sundal, A.V., van Angelen, J.H., van de Berg, W.J., van den Broeke, M.R., Vaughan, D.G., Velicogna, I., Wahr, J., Whitehouse, P.L., Wingham, D.J., Yi, D., Young, D., Zwally, H.J. 2012. A reconciled estimate of ice-sheet mass balance. Science, 338 (6111), 1183-1189. https://science.sciencemag.org/content/338/6111/1183 (last accessed: 19 November 2019). https://doi.org/10.1126/science.1228102
  21. Shepherd, A., L. Gilbert, A.S. Muir, H. Konrad, M. McMillan, T. Slater, K.H. Briggs, A.V. Sundal, A.E. Hogg, M. Engdahl. 2019. Trends in Antarctic Ice Sheet elevation and mass. Geophysical Research Letters, 46, 8174-8183. https://doi.org/10.1029/2019GL082182.
  22. Silva, A. B., Arigony-Neto, J., Braun, M., de Almeida Espinoza, J. M., Costi, J., Janã, R. 2020. Spatial and temporal analysis of changes in the glaciers of the Antarctic Peninsula. Global and Planetary Change, 184, 103079. https://www.sciencedirect.com/science/article/pii/S0921818119305648 (last accessed: 19 November 2019). https://doi.org/10.1016/j.gloplacha.2019.103079
  23. Silva, A. B., Neto, J. A., Júnior, C. W. M., Lemos, A. G. 2014. Variations in surface velocities of tidewater glaciers of the Antarctic peninsula between the periods 1988-1991 and 2000-2003. Brazilian Journal of Geophysics, 32 (1), 49-60. https://sbgf.org.br/revista/index.php/rbgf/article/view/422/0 (last accessed: 19 November 2019). https://doi.org/10.22564/rbgf.v32i1.422
  24. Sobota, I., Kejna, M., Araźny, A. 2015. Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarctic Science, 27 (5), 500-510. https://doi.org/10.1017/S0954102015000188.
  25. Thomas, E. R., Melchior Van Wessem, J., Roberts, J., Isaksson, E., Schlosser, E., Fudge, T. J., Vallelonga, P., Medley, B., Lenaerts, J., Bertler, N., van den Broeke, M. R., Dixon, D. A., Frezzotti, M., Stenni, B., Curran, M., Ekaykin, A. A. 2017. Regional Antarctic snow accumulation over the past 1000 years. Climate of the Past, 13 (11), 1491-1513. https://doi.org/10.5194/cp-13-1491-2017.
  26. Thomas, E., Tetzner, D. 2018. The Climate of the Antarctic Peninsula during the Twentieth Century: Evidence from Ice Cores, Antarctica - A Key To Global Change, Masaki Kanao, Genti Toyokuni and Masa-yuki Yamamoto. IntechOpen, https://doi.org/10.5772/intechopen.81507.
  27. Tretyak, K., Hlotov, V., Holubinka, Y., Marusazh, K. 2016. Complex geodetic research in Ukrainian Antarctic station "Academician Vernadsky" (years 2002-2005, 2013-2014). Reports on Geodesy and Geoinformatics, 100 (1), 149-163. https://doi.org/10.1515/rgg-2016-0012.
  28. Trimble UX5 HP Unmanned Aircraft System. URL: http://www.kmcgeo.com/Datasheets/UX5HP.pdf (last accessed: 19 November 2019).
  29. Turner, J., Barrand, N., Bracegirdle, T., Convey, P., Hodgson, D. A., Jarvis, M., Jenkins, A., Marshall, G., Meredith, M. P., Roscoe, H., Shanklin, J., French, J., Goosse, H., Guglielmin, M., Gutt, J., Jacobs, S., Kennicutt, M. C., Masson-Delmotte, V., Mayewski, P., Navarro, F., Robinson, S. A., Scambos, T., Sparrow, M., Summerhayes, C., Speer, K. Klepikov, A. 2014. Antarctic climate change and the environment: an update. Polar Record, 50 (3), 237-259. http://dx.doi.org/10.1017/S0032247413000296.
  30. Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R., Deb, P. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535 (7612), 411-415. https://www.nature.com/articles/nature18645 (last accessed: 19 November 2019). https://doi.org/10.1038/nature18645
  31. van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., van den Broeke, M. R. 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016). The Cryosphere, 12, 1479-1498. https://doi.org/10.5194/tc-12-1479-2018.
  32. Wang, Y., Thomas, E. R., Hou, S., Huai, B., Wu, S., Sun, W., Qi, S., Ding, M., Zhang, Y. 2017. Snow accumulation variability over the West Antarctic Ice Sheet since 1900: A comparison of ice core records with ERA-20C reanalysis. Geophysical Research Letters, 44 (22), 11482-11490. https://doi.org/10.1002/2017GL075135.
  33. Yanalak, M. 2005. Computing pit excavation volume. Journal of surveying engineering, 131 (1), 15-19. https://doi.org/10.1061/(ASCE)0733-9453(2005)131:1(15).