Ionosphere over Ukrainian Antarctic Akademik Vernadsky station under minima of solar and magnetic activities, and daily insolation: case study for June 2019
- electron and ion temperatures,
- electron density,
- F2 layer peak height,
- ionosonde,
- reference model of ionosphere
- satellite ...More
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
We present ionospheric observational results obtained over Ukrainian Antarctic Akademik Vernadsky station. Ionospheric parameters (peak electron density and height, electron density and electron and ion temperatures in the topside) during the period near the local winter solstice in the Southern Hemisphere (June 28—29, 2019) are considered. The main objective is to show distinctive features of variations in ionospheric parameters during a prolonged period with very low solar and magnetic activities, and minimal daily insolation. Methods. F2 layer peak electron density and height were calculated from ionograms
obtained with ionosonde installed at the station with subsequent profile inversion. Defense Meteorological Satellite Program (DMSP) and Swarm data acquired over the station are used as well. Diurnal variations of electron density, and electron and ion temperatures at the altitude of the satellites’ orbits were calculated using a set of sub-models of the International Reference Ionosphere-2016 (IRI-2016) model. Results. We found a very good agreement between the observed and model variations of F2 layer peak electron density. Significant (by ~2 times) nighttime enhancement of electron density was observed on June 29. Electron
density models show the similar increase of the density at the same time interval but this enhancement is much more smoothed comparing with the observations. Peak height values obtained using ionosonde are very close to ones calculated with the IRI-2016 sub-models. Satellite data are in a good consistency with the IRI model predictions, especially for electron density obtained by Swarm satellite. Conclusions. Multi-instrumental observations revealed a number of unique features of the ionosphere over Antarctic Peninsula under minima of solar and magnetic activities, and daily insolation.
References
- Altadill, D., Magdaleno, S., Torta, J.M., Blanch, E. 2013. Global empirical models of the density peak height and of the equivalent scale height for quiet conditions. Advances in Space Research, 52 (10), 1756-1769. https://www.doi.org/10.1016/j.asr.2012.11.018.
- Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., Huang, X. 2017. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather-the International Journal of Research and Applications, 15 (2), 418-429. https://doi.org/10.1002/2016SW001593.
- Broom, S.M. 1984. A new ionosonde for Argentine Islands ionospheric observatory, Faraday Station. British Antarctic Survey Bulletin, 62, 1-6.
- Foppiano, A.J., Won, Y.I., Torres, X.A., Flores, P.A., Veloso, A.D., Arriagada, M.A. 2016. Ionosonde and optical determinations of thermospheric neutral winds over the Antarctic Peninsula. Advances in Space Research, 58 (10), 2026-2036. https://doi.org/10.1016/j.asr.2016.01.001
- Garner, T.W., Taylor, B.T., Gaussiran, T.L., Coley, W.R., Hairston, M.R., Rich, F.J. 2010. Statistical behavior of the topside electron density as determined from DMSP observations: A probabilistic climatology. Journal of Geophysical Research: Space Physics, 115 (A7). https://doi.org/10.1029/2009 JA014695.
- Hairston, M.R., Mrak, S., Coley, W.R., Burrell, A., Holt, B., Perdue, M., Depew, M., Power, R. 2018. Topside ionospheric electron temperature observations of the 21 August 2017 eclipse by DMSP spacecraft. Geophysical Research Letters, 45 (15), 7242-7247. https://doi.org/10.1029/2018GL07 7381.
- Hochegger, G., Nava, B., Radicella, S.M., Leitinger, R. 2000. A family of ionospheric models for different uses. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 25, 307-310. https://doi.org/10.1016/S1464-1917(00)00022-2.
- Huang, X., Reinisch, B.W. 1996. Vertical electron density profiles from the Digisonde network. Adv. Space Res., 18, 121-129. https://doi.org/10.1016/0273-1177(95)00912-4.
- Koloskov, O.V., Kashcheyev, A.S., Zalizovski, A.V., Kashcheyev, S.B., Budanov, O.V., Charkina, O.V., Pikulik, I.I., Lysachenko, V.M., Sopin, A.O., Reznychenko, A.I. New digital ionosonde developed for Ukrainian Antarctic station "Akademik Vernadsky". IX International Antarctic Conference dedicated to the 60th anniversary of the signing of the Antarctic Treaty in the name of peace and development of international cooperation: Physical sciences. Kyiv, 14-16 May, 2019, 166-167.
- Kotov, D.V., Richards, P.G., Truhlík, V., Bogomaz, O.V., Shulha, M.O., Maruyama, N., Hairston, M., Miyoshi, Y., Kasahara, Y., Kumamoto, A., Tsuchiya, F., Matsuoka, A., Shinohara, I., Hernández-Pajares, M., Domnin, I.F., Zhivolup, T.G., Emelyanov, L.Ya., Chepurnyy, Ya.M. 2018. Coincident Observations by the Kharkiv IS Radar and Ionosonde, DMSP and Arase (ERG) Satellites, and FLIP Model Simulations: Implications for the NRLMSISE-00 Hydrogen Density, Plasmasphere, and Ionosphere. Geophysical Research Letters, 45 (16), 8062-8071. https://doi.org/10.1029/2018GL079206.
- Leitinger, R., Zhang, M.L., Radicella, S.M. 2005. An improved bottomside for the ionospheric electron density model NeQuick. Annals of Geophysics, 48, 525-534. https://doi.org/10.4401/ag-3217.
- Moro, J., Xu, J., Marcos De Nardin, C., Cristina Araújo Resende, L., Pereira Silva, R., Su Chen, S., Arlan da Silva Picanço, G., Zhengkuan, L., Li, H., Yan, C., Wang, C., Jorge Schuch, N. 2019. Performance of the IRI-2016 at the Brazilian low-latitude ionosphere over the South America Magnetic Anomaly during solar minimum, Ann. Geophys. Discuss., in review. https://doi.org/10.5194/angeo-2019-126.
- Nava, B., Coïsson, P., Radicella, S.M. 2008. A new version of the NeQuick ionosphere electron density mode. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1856-1862. http:// doi.org/10.1016/j.jastp.2008.01.015.
- Olsen, N., Floberghagen, R. 2018. Exploring Geospace from Space: the Swarm Satellite Constellation Mission. Space Res. Today, 203, 61-71. https://doi.org/10.1016/j.srt.2018.11.017.
- Oyekola, O.S. 2019. Comparison of IRI-2016 model-predictions of F2-layer peak density height options with the ionosonde-derived hmF2 at the equatorial station during different phases of solar cycle. Advances in Space Research, 64 (10), 2064-2076. https://doi.org/10.1016/j.asr.2019.04.022.
- Radicella, S.M. 2009. The NeQuick model genesis, uses and evolution. Annals of Geophysics, 52, 417-422. https://doi.org/10.4401/ag-4597.
- Reinisch, B.W., Galkin, I.A. 2011. Global Ionospheric Radio Observatory (GIRO), Earth, Planets and Space, 63 (4), 377-381, https://doi.org/10.5047/eps.2011.03.001.
- Rich, F.J. 1994. Users guide for the topside ionospheric plasma monitor (SSIES, SSIES-2, and SSIES-3) on spacecraft of the Defense Meteorological Satellite Program, volume 1: Technical description. (Technical report PL-TR-94-2187). Phillips Laboratory. https://doi.org/10.21236/ADA315731
- Rodger, A.S., Smith, A.J., Rycroft, M.J. 1989. Antarctic Studies of the Coupled Ionosphere-Magnetosphere System [and Discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 328 (1598), 271-287. http://doi.org/10.1098/rsta.1989.0036.
- Shubin, V.N. 2015. Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations. Adv. Space Res., 56, 916-928. https://doi.org/10.1016/j.asr.2015.05.029.
- Shulha, M.O., Kotov, D.V., Bogomaz, O.V., Zhivolup, T.G., Koloskov, O.V., Lisachenko, V.M., Hairston, M. Multiinstrumental and modeling investigation of ionospheric response to weak geomagnetic storm of 21-23 March 2017 over the Ukrainian Antarctic station and magnetically conjugate region. IX International Antarctic Conference dedicated to the 60th anniversary of the signing of the Antarctic Treaty in the name of peace and development of international cooperation: Physical sciences. Kyiv, 14-16 May, 2019, 179-180.
- Truhlik, V., Triskova, L., Smilauer, J., Afonin, V.V. 2000. Global empirical model of electron temperature in the outer ionosphere for period of high solar activity based on data of three Intercosmos satellites. Adv. Space Res., 25 (1), 163-169. https://doi.org/10.1016/S0273-1177(99)00914-X.
- Truhlik, V., Bilitza, D., Triskova, L. 2012. A new global empirical model of the electron temperature with the inclusion of the solar activity variations for IRI. Earth, Planets and Space, 64, 531-543. https://doi.org/10.5047/eps.2011.10.016.
- Zalizovski, A.V., Kashcheyev, A.S., Kashcheyev, S.B., Koloskov, A.V., Lisachenko, V.N., Paznukhov, V.V., Pikulik, I.I., Sopin, A.A., Yampolski, Yu.M. 2018. A prototype of a portable coherent ionosonde model. Space science and technology - Kosmichna nauka i tehnologia, 24 (3), 10-22. http://doi.org/10.15407/knit2018.03.010.
- Zhao, X., Ning, B., Zhang, M.L., Hu, L. 2017. Comparison of the ionospheric F2 peak height between ionosonde measurements and IRI2016 predictions over China. Adv. Space Res., 60, 1524-1531. http://doi.org/10.1016/j.asr.2017. 06.056.