No 2(19) (2019): Ukrainian Antarctic journal
Articles

Energy content of sublittoral biologically-relevant resources in the East Antarctic seas

Yu. G. Giginyak
State Research and Production Association "Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources", 27 Academicheskaya Str., Minsk, 220072, Belarus
Dz. A. Lukashanets
State Research and Production Association "Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources", 27 Academicheskaya Str., Minsk, 220072, Belarus
O. I. Borodin
State Research and Production Association "Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources", 27 Academicheskaya Str., Minsk, 220072, Belarus
V. E. Miamin
State Research and Production Association "Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources", 27 Academicheskaya Str., Minsk, 220072, Belarus
V. M. Baichorov
State Research and Production Association "Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources", 27 Academicheskaya Str., Minsk, 220072, Belarus
Published January 22, 2020
Keywords
  • energy value,
  • caloric content,
  • marine biota,
  • zoobenthos,
  • phytoplankton,
  • zooplankton
  • ...More
    Less

Abstract

Objective.To determine the energy value of several groups of the East Antarctic sea biota and identify potential calorific differences in the context of both taxa and ecological groups. Methodology. Sampling was carried out by traditional methods (benthic traps, diving gathering), and remote sampling was also applied (using remote-controlled underwater vehicles). The energy value of organisms is determined using wet burning methods. Results. The energy indicators of the main biological objects of the sublittoral of the three seas at the East Antarctica were determined for the first time. It has been shown that in the studied sublittoral regions of the Cosmonauts, Cooperation (more Sodruzhestva) and Davis seas, the dominant species of marine zoobenthos was the sea urchin Sterechinus neumayeri (Meissner, 1900). The caloric values of starfish, polychaetes, nemerteans, sponges, ascidia, holothurians, crustaceans, and some other taxa of marine biota were determined. It is shown that the content of organic matter in Antarctic species varies from 12—94%, and caloric content — from 0.7—7.3% cal / mg dry matter, with the maximum values registered for amphipods and calanoids. The energy equivalents of marine zoobenthos per unit of bottom square have been calculated. The ratio equation of the caloric content of the substance of the studied object to the ash
content is calculated. Conclusions. In general, we can conclude that the caloric values of marine zoobenthos in all three studied seas are close to each other. Furthermore, the caloric content of individual representatives of marine fauna varies significantly and, in general, depends on the quantity and quality of organic matter in certain species as well as on the season of year. The low-caloric representatives of the Antarctic flora and fauna correspond to the high substance ash levels of their body. Depending on the energy value significance, several groups of marine biota were represented, represented by various taxa.

References

  1. Davis, N. D. 1993. Caloric content of oceanic zooplankton and fishes for studies of salmonid food habits and their ecologically related species. (NPAFC Doe.) FRI-UW-93 12. Fisheries Research Institute, University of Washington, Seattle. 10.
  2. Finlay, B.J., Uhlig, G. 1981. Calorific and carbon values of marine and fresh water Protozoa. Helgolander Meeresunters, 34, 401-412 (1981). https://doi.org/10.1007/BF01995913.
  3. Giginyak, Y.G. 1975. Nekotorye osobennosti biologii i kaloriinost bespozvonochnyh sublitorali Antarktiki. [Some features of biology and caloric of invertebrates sublittoral zone of Antarctic]. Avtoref dis na soisk uch step kand biol nauk [Abstract of thesis of Candidate of Biological Sciences]. Minsk. 23.
  4. Giginyak, Y.G. 1975. Razmerno-vesovaia harakteristika, plodovitost, energeticheskaia otcenka Cymodocella tybicauda (Isopoda) [Size-weight peculiarities, fecundity, energy assessment of Cymodocella tybicauda (Isopoda)]. Trudy 1 Resp simp po ekologo-energ aspektam rosta i razm vodn bespozv [Proceedings of the 1 Rep. symp. on ecologycal and energy aspects of growth and breeding of the aquatic invertebrates]. Minsk.
  5. Giginyak, Y.G. 1979. Kaloriinost vodnyh bespozvonochnyh zhivotnyh [Caloric content of aquatic invertebrates].Obshchie osnovy izucheniia vodnykh ekosistem [General basics of studying of the aquatic ecosystems]. L.: Nauka. 6-16.
  6. Giginyak, Y.G. 1983. Kaloriinost vodnyh bespozvonochnyh Antarctiki [Caloric content of Antarctic aquatic invertebrates]. Vses. nauchn. konf. Sy'r'evy'e resursy' Antarkticheskoj zony' okeana i problemy' ikh raczional'nogo ispol'zovaniya [All-Union scientific conf. Raw materials of the Antarctic Ocean zone and problems of their rational use]. Kerch.
  7. Giginyak, Y. 2013. Dinamics of oxygen content in surface layer of water in Davis sea (Eastern Antarctica). VI Mizhnarodna Antarktychna Konferentsiia [VI International Antarctic Conference]. Kyiv, May 15, 2013, 135-136.
  8. Giginyak, Y.G. 2014. Energeticheskaia otcenka bioty sublitorali vysokoshirotnogo moria Antarktiki [Energy assessment of sublittoral biota of high-latitude Antarctic seas]. Materialy 1 Mezhdunarodnoi nauchno-prakticheskoi konferentsii 26-29 maia 2014 g. Naroch [Materials of the I International scientifically-practical conference, Naroch, on May, 26-29th, 2014]. Minsk: Ekoperspektiva. 46-51.
  9. Giginyak, Y.G., Lukashanets, D.A., Gaidashov, A. A. 2018. Opyt ispolzovaniia teleupravliaemogo podvodnogo apparata "Gnom" pri otcenke zapasov morskih biologicheskih resursov v usloviiah Antarktiki [Experience of using the remote-controlled underwater vehicle "Gnom" for assessment of marine biological resources at the Antarctic conditions]. Materialy 3 Mezhdunarodnoi nauchno-prakticheskoi konferentsii 17-19 sentiabria 2018 g. [Materials of the 3rd International Scientific and Practical Conference, September 17-19, 2018]. Minsk, 106-113.
  10. Giginyak, Y., Grusov, E. 2009. Hydrobiological researches of coastal bottom communities in Davis sea (Antarctica). International Antarctic conference IAC 2009. International Polar Year in Ukraine: results and horizons, 2009, Kharkiv, Ukraine.
  11. Giginyak, Y., Borodin, O. 2011-2012. Biological researches around the Belarusian Antarctic Expedition's Camp «Vechernyaya Mountain» (East Antarctica). Ukrainian Antarctic Journal, 10-11, 311-314.
  12. Gruzov, E.N., Sheremetevskiy A.M. 1973. Biologicheskie issledovaniia v more Devisa, 1970-1972 gg. [Biological investigations in the Davis Sea, 1970-1972]. Trudy 16-oi Sov Antarkt eksped [Proceedings of the 16th Sov. Antarkt. Expedition].
  13. Harmelin-Vivien,M., Bănaru, D., Dromard, C., Ourgaud, M., Carlotti, F. Biochemical composition and energy content of size-fractionated zooplankton east of the Kerguelen Islands. Polar Biology, 2019, 42 (3), 603-617. https://doi.org/10.1007/s00300-019-02458-8
  14. Norrbin, F., Bamstedt, U. 1984. Energy contents in benthic and planktonic invertebrates of Kosterfjorden. Sweden. A comparison of energetic strategies in marine organism groups. Ophelia, 23, 47-64. https://doi.org/10.1080/00785236.1984.10426604
  15. Núñez-Pons, L., Avila, C. 2014. Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators. Polar Res., 33. https://doi.org/10.3402/polar.v33.21624.
  16. Orejas V.C. 2001. Role of benthic cnidarians in energy transfer processes in the Southern Ocean marine ecosystem (Antarctica). Rolle der bodenlebenden Nesseltiere im Stofffluß des marinen Ökosystems des Südpolarmeeres (Antarktis), Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 395, 186. https://doi.org/10.2312/BzPM_0 395_2001.
  17. Platt, T., Irwin, B. 1973. Caloric content of phytoplankton. Limnol. Oceanogr., 18, 306-310. https://doi.org/10.4319/lo.1973.18.2.0306.
  18. Renk, H., Filarski, J., Ochocki, S., Piechowska, B. 1985. Energetic value and lipid content of the Baltic zooplankton. Oceanologia, 21, 99-108.
  19. Schaafsma, F.L., Cherel, Y., Flores, H., van Franeker, J. A., Lea, M.-A., Raymond, B., van de Putte, A. P. 2018. Review: the energetic value of zooplankton and nekton species of the Southern Ocean. Marine Biology, 165, 129. https://doi.org/10.1007/s00227-018-3386-z
  20. Wacasey, J.W., Atkinson, E.G. 1987. Energy values of marine benthic invertebrates from the Canadian Arctic. Mar. Ecol. Prog. Ser., 39, 243-250. https://doi.org/10.3354/meps039243