Ukrainian Antarctic Journal

No 13 (2014): Ukrainian Antarctic Journal
Articles

The observability of the ionospheric Alfven resonances in Antarctica over the complete solar cycle and the splitting effect

N.A. Baru
Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 4, Chervonopraporna Str., Kharkiv, 61002, Ukraine
A.V. Koloskov
Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 4, Chervonopraporna Str., Kharkiv, 61002, Ukraine
Yu.M. Yampolski
Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 4, Chervonopraporna Str., Kharkiv, 61002, Ukraine
R.A. Rahmatulin
The Institute of Solar-Terrestrial Physics, Siberian Brunch, 126-a, Lermontov St., Irkutsk, 664033, Russia
A.Yu. Pashinin
The Institute of Solar-Terrestrial Physics, Siberian Brunch, 126-a, Lermontov St., Irkutsk, 664033, Russia
Published December 17, 2014
Keywords
  • ionospheric Alfven resonance,
  • solar cycle,
  • splitting
How to Cite
Baru, N., Koloskov, A., Yampolski, Y., Rahmatulin, R., & Pashinin, A. (2014). The observability of the ionospheric Alfven resonances in Antarctica over the complete solar cycle and the splitting effect. Ukrainian Antarctic Journal, (13), 124-132. https://doi.org/10.33275/1727-7485.13.2014.219

Abstract

The dependence of the characteristics of the ionospheric Alfven resonance (IAR) signals from the geomagnetic and solar activity are investigated over an eleven-year solar cycle on the grounds of the analysis of the continuous data of the natural VLF-ELF noise that is registered at Ukrainian Antarctic Station (UAS) Akademik Vernadky from 2002 till 2013. Significant anticorrelation between the observability of the resonance modes and the Wolf numbers and local K-indexes that is measured at UAS is found. The diurnal and seasonal regularities of the observability of the new effect, the splitting of the lower resonance modes, and its dependence form the phase of the eleven-year solar cycle are investigated using the data of IAR observations at UAS and Sayan Solar observatory (Mondy, Russia). The morphological features of the behaviour of the splitting magnitude are analyzed and its main stages as evolution, stationary section and relaxation are allocated. Possible mechanisms of the appearance of splitting effect are offered.

References

  1. Baru, N.A., Koloskov, A.V., & Raxmatullin, R.A. (2012). Mnogopozicionny`e nablyudeniya signalov ionosfernogo al`fvenovskogo rezonansa [Multipositional observations of signals of the ionospheric Alfven resonance]. Sb. tez. dokl. Pervoj ukrainskoj konferencii E`MES. Kharkiv, Ukraine. 133–135.
  2. Baru, N.A., Koloskov, A.V., Raxmatulin, R.A. (2013). Zavisimost` xarakteristik ionosfernogo al`fvenovskogo rezonansa ot sostoyaniya geokosmosa po danny`m sinxronny`x nablyudenij v Antarktike i Evrazii [Dependence of the parameters of the ionospheric Alfven resonance on the state of geospace by the data of synchronous observations in Antarctica and Eurasia]. Ukrainian Antarctic Journal, 12, 177–185.
  3. Baru, N.A., Koloskov, A.V., Yampol`skij, Yu.M. et al. (2014). Metodika ocenki kriticheskoj chastoty` sloya F2 po raznosti sobstvenny`x chastot ionosferny`x al`fvenovskix rezonansov [A method to evaluate the critical frequency of the F2 layer by the difference in own frequencies of the ionospheric Alfven resonances]. Radiofizika i radioastronomiya, 19(2), 151–159.
  4. Belyaev, P.P., Polyakov, S.V., Rapoport, V.O. et al. (1989). E`ksperimental`ny`e issledovaniya rezonansnoj struktury` spektra atmosfernogo e`lektromagnitnogo shumovogo fona v diapazone korotkoperiodny`x geomagnitny`x pul`sacij [Experimental research of the resonance structure of the range of the atmospheric electromagnetic background noise in the short-period geomagnetic pulsations range]. Izvestiya vuzov. Radiofizika, 32(6), 663–672.
  5. Koloskov, A.V., Bezrodny`j, V.G., Budanov, O.V. et al. (2005). Polyarizacionny`j monitoring shumanovskix rezonansov v Antarktike i vosstanovlenie xarakteristik mirovoj grozovoj aktivnosti [Polarization monitoring of Schumann resonances in the Antarctica and recovering of the world lightning activity parameters]. Radiofizika i Radioastronomiya, 10(1), 11–29.
  6. Koloskov, A.V., Sinicyn, V.G., Gerasimova, N.N. et al. (2008). Okolozemny`e rezonatory` SNCh-voln kak indikatory` kosmicheskoj pogody` [ELF resonant cavities in the geospace as space weather indicators]. Kosmichna nauka i tekhnolohiia, 14(5), 49–64.
  7. Dudkin, D., Pilipenko, V., Korepanov, V. et al. (2014). Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatellite. Journal of Atmospheric and Solar-Terrestrial Physics, 117, 81–87.
  8. Hayakawa, M., Molchanov, O.A., Schekotov, A.Yu. et al. (2004). Observation of ionospheric Alfven resonance at a middle latitude station. Advances in Polar Upper Atmosphere Research, 18, 67–76.
  9. Molchanov, O.A., Schekotov, A.Yu., Fedorov, E. et al. (2004). Ionospheric Alfven resonance at middle latitudes: results of observations at Kamchatka. Physics and Chemistry of the Earth, Parts A/B/C, 29(4–9), 649–655.
  10. Yahnin, A.G., Semenova, N.V., Ostapenko, A.A. et al. (2003). Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1–4 Hz at L=5.2. ANGEO, 21(3), 779–786.
  11. Belyaev, P.P., Polyakov, S.V., Ermakova, E.N. et al. (2000). Solar cycle variations in the ionospheric Alfven resonator 1985–1995. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 239–248.