Ukrainian Antarctic Journal

No 12 (2013): Ukrainian Antarctic Journal
Articles

The mystery of Antarctic climate change and its relation to geomagnetic field

N. A. Kilifarska
National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia
V. G. Bakhmutov
Institute of Geophysics, National Academy of Sciences of the Ukraine, Kyiv
G. V. Melnyk
Institute of Geophysics, National Academy of Sciences of the Ukraine, Kyiv
Published December 15, 2013
Keywords
  • geomagnetic field intensity,
  • energetic particles,,
  • lower stratospheric ozone and water vapour,
  • climate variability
How to Cite
Kilifarska, N. A., Bakhmutov, V. G., & Melnyk, G. V. (2013). The mystery of Antarctic climate change and its relation to geomagnetic field. Ukrainian Antarctic Journal, (12), 45-55. https://doi.org/10.33275/1727-7485.12.2013.246

Abstract

The regional characteristics of changing climate are serious challenge for the current understanding regarding the driving factors of climate variability. Here we present a plausible explanation for the diversity of regional response of Antarctic climate to uniform enhancement of greenhouse gases, i.e. the simultaneous warming of the Western and cooling of the Eastern Antarctica. The explanation is related to the heterogeneously distributed geomagnetic field, controlling the intensity and depth of particles penetration in the Earth’s atmosphere. We discover that at seasonal basis the solar proton activity initiates enhancement of the ozone density in the lower stratosphere over East Antarctica. This starts up the mechanism for drying of the upper troposphere and lower stratosphere − through O3 influence on temperature and static stability of air masses. Thus warming of the tropopause region reduces static stability, blocking upward propagation of the water vapour from the wetter middle troposphere. As a result the Earth’s longwave radiation freely escapes in the space − a process accompanied with persistent cooling of the surface air in the eastern part of the continent. During the passed half a century the ozone density in the Western Antarctica is substantially lower, that diminished severely the ozone-water vapour cooling effect.

References

  1. Baxmutov, V.G., Martazinova, V.F., Ivanova, E.K., & Mel`nik, G.V. (2011). Izmeneniya glavnogo magnitnogo polya i klimata v XX veke [Changes in the main magnetic field and climate in the XX century]. Dopovidi Natsionalnoi Akademii nauk Ukrainy. Nauky pro Zemliu, 7, 90–94.
  2. Banks, P.M., & Kockarts, G. (1973). Aeronomy. Part B. New York, London, Acad. Press.
  3. Bucha, V., Taylor, R.E., Berger, R., & Haury, E.W. (1970). Geomagnetic Intensity: Changes during the Past 3000 Years in the Western Hemisphere Science, 168, 111–114.
  4. Calogovic, J., Albert, C., Arnold, F., Beer, J., Desorgher, J.J., & Flueckiger, E.O. (2010). Sudden cosmic ray decreases: No change of global cloud cover. Geophysical Research Letters, 37, L 03802.
  5. Courtillot, V., Gallet, Y., Le Mouel, J.L., Fluteau, F., & Genevey, A. (2007). Are there connections between the Earth’s magnetic field and climate? Earth Planet. Sci. Lett., 253, 328–339.
  6. Courtillot, V., Le Mouel, J., Ducruix, J., & Cazenave, A. (1982). Magnetic secular variation as a precursor of climatic change. Nature, 297, 386–387.
  7. Duplissy, J. et al. (2010). Results from the CERN pilot CLOUD experiment. Atmos. Chem. Phys., 10, 1635–1647.
  8. Elsasser, W., Ney, E.P., & Winckler, J.R. (1956). Cosmic-Ray Intensity and Geomagnetism. Nature, 178, 1226.
  9. Forster, P.M., & Shine, K. (1997). Radiative forcing and temperature trends from stratospheric ozone changes. Journal of Geophysical Research D: Atmospheres, 102, 10841–10855.
  10. Forster, P.M., & Tourpali, P.M. (2001). Effect of tropopause height changes on the calculation of ozone trends and their radiative forcing. Journal of Geophysical Research D: Atmospheres, 106, 12241–12251.
  11. Gallet, Y., Genevey, A., & Fluteau, F. (2005). Does Earth’s magnetic field secular variation control centennial climate change? Earth Planet. Sci. Lett., 236, 339–347.
  12. Gauss, M. et al. (2006). Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos. Chem. Phys., 6, 575–599.
  13. Gillett, N.P., & Thompson, D.W.J. (2003). Simulation of recent Southern Hemisphere climate change. Science, 302, 273–275.
  14. Harrison, C.G.A., & Funnell, B.M. (1964). Relationship of paleomagnetic reversals and micropaleontology in two late cenozoic cores from the Pacific Ocean. Nature, 204, 566.
  15. IPCC/TEAPSpecial Report: Safeguarding the Ozone Layer and the Global Climate System, chapt. 1. –UNFCCC/SBSTA 22, Bonn, Germany, 2005.
  16. Keeley, S.P.E. et al. (2007). Is Antarctic climate most sensitive to ozone depletion in the middle or lower stratosphere? Geophys. Res. Lett., 34.
  17. Kenny, D.A. (1979). Correlation and causality. John Wiley & Sons Inc.
  18. Kilifarska, N.A. (2013). An autocatalytic cycle for ozone production in the lower stratosphere initiated by Galactic Cosmic rays. Compt. rend. Acad. Bulg. Sci., 66(2), 243–252.
  19. Kilifarska, N.A., Bakhmutov, V.G., & Melnyk, G.V. (2013a). Geomagnetic influence on Antarctic climate –evidences and mechanism. Int. Rev. Phys., 7(3), 242–252.
  20. Kilifarska, N.A., Bakhmutov, V.G., & Melnyk, G.V. (2013b). Energetic particles influence onthe southern Hemisphere ozone variability . Compt. rend. Acad. Bulg. Sci., 66, in press.
  21. Kilifarska, N.A. (2012a). Climate sensitivity to the lower stratospheric ozone variations. J. Atmos. Sol-Terr. Phys., 90–91, 9–14.
  22. Kilifarska, N.A. (2012b). Mechanism of lower stratospheric ozone influence on climate. Int. Rev. Phys., 6(3), 279–290.
  23. King, J.W. (1974). Weather and Earth’s magnetic field. Nature, 247, 131–134.
  24. Kirkby, J. et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476, 429–433.
  25. Kristjansson, J.E. et al. (2008). Cosmic rays, cloud condensation nuclei and clouds –a reassessment using MODIS data. Atmos. Chem. Phys., 8, 7373–7387.
  26. Kulmala, M. et al. (2010). Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos. Chem. Phys., 10, 1885–1898.
  27. Kurt, V., Belov, A., Mavromichalaki, H., & Gerontidou, M. (2004). Statistical analysis of solar proton events. Ann. Geophys., 22, 2255–2271.
  28. North, G.R., & Eruhimova, T.L. (2009). Atmospheric thermodynamics: elementary physics and chemistry. Cambridge University Press.
  29. Ramanatan, V., Callis, L.B., & Boucher, R.E. (1976). Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric ozone and nitrogen dioxide. J. Atmos. Sci., 33, 1092–1112.
  30. Schneider, D.P., Steig, E., van Ommen, T.D., Dixon, D.A., Mayewski, P., Jones, J. M., & Bitz, C.M. (2006). Antarctic temperatures over the past two centuries from ice cores. Geophysical Research Letters, 33, L16707.
  31. Seidel, D.J., & Randel, W.J. (2006). Variability and trends in the global tropopause estimated from radiosonde data. Journal Geophysical Research D, Atmospheres, 111.
  32. Shindell, D.T., & Schmidt, G.A. (2004). Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophysical Research Letters, 31.
  33. Slanger, T.G., Jusinski, L.E., Black, G., & Gadd, G.E. (1988). A new laboratory source of ozone and its potential atmospheric implications. Science, 241, 945–950.
  34. Sloan, T., & Wolfendale, A.W. (2008). Testing the proposed causal link between cosmic rays and cloud cover. Environ. Res. Lett., 3, 024001.
  35. Sonnemann, G.R., & Hartogh, P. (2009). Upper stratospheric ozone decrease events due to a positive feedback between ozone and the ozone dissociation rate. Nonlinear Processes Geophysics, 16, 409–418.
  36. Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C., & Shindell, D.T. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459–462.
  37. Stuber, N., Sausen, R., & Ponater, M. (2001). Stratosphere adjusted radiative forcing calculations in a comprehensive climate model. Theor. Appl. Climatol., 68, 125–135.
  38. Thompson, D.W.J., & Solomon, S. (2002). Interpretation of recent Southern Hemisphere climate change. Science, 296, 895–899.
  39. Turner, J. (2004). The El Niño-Southern Oscillation and the Antarctic. International Journal of Climatology, 24, 1–31.
  40. Van den Broeke, M.R. (2005). Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, L12815.
  41. Wang, W.-Ch., Zhuang, Y.-Ch., & Bojkov, R. (1993). Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the Northern Hemisphere. Geophysical Research Letters, 20, 1567–1570.
  42. Wirth, V. (1993). Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. Journal of Geophysical Research, 98, 8873-8882.
  43. Wollin, G., Ericson, D.B., Ryan, W.B.F. (1971). Variations in magnetic intensity and climate changes. Nature, 232, 549–550.