Ukrainian Antarctic Journal

No 12 (2013): Ukrainian Antarctic Journal
Articles

Dependence of the parameters of ionospheric Alfven resonance from the conditions of Geospace by the data of synchronous observations in Antarctica and Eurasia

N. A. Baru
Institute of Radio Astronomy of NAS of Ukraine, Kharkiv
A. V. Koloskov
Institute of Radio Astronomy of NAS of Ukraine, Kharkiv
R. A. Rakhmatulin
Institute of Solar Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS), Irkutsk
Published December 15, 2013
Keywords
  • ionosphere,
  • Alfven,
  • resonance,
  • critical frequency,
  • morphology
How to Cite
Baru, N. A., Koloskov, A. V., & Rakhmatulin, R. A. (2013). Dependence of the parameters of ionospheric Alfven resonance from the conditions of Geospace by the data of synchronous observations in Antarctica and Eurasia. Ukrainian Antarctic Journal, (12), 177-185. https://doi.org/10.33275/1727-7485.12.2013.261

Abstract

Among the processes in the circumterrestrial plasma what form properties of the geospace the key role belong to the electromagnetic resonances of the Earth: Schummann Resonance (SR) and Ionospheric Alfven Resonance (IAR). This is because IAR is localized in space more than SR and its properties largely depend on the characteristics of the propagation medium. In contrast to the SR, which has global nature and which is observable at any time, IAR signals are registered mostly during the night and demonstrate more variability of the parameters than SR signals. At the Earth surface IAR is registered as Spectral Resonance Structure (SRS) of the natural electromagnetic noise at frequency range 0.1-30 Гц. In this work we studied an influence of the characteristics of environment on IAR parameters by the means of multiposition observations. Annual data series recorded at Ukrainian Antarctic Station “Akademik Vernadskiy” (UAS), Low Frequency Observatory (LFO) IRA NASU near Kharkov (Ukraine) and magnetic station of Sayan Solar Observatory Mondy near Irkutsk (Russia) were used for the analysis. Authors investigated the behaviour of IAR parameters, such as probability of resonance lines registration, frequency spacing dF, for annual and diurnal intervals. These parameters were compared with characteristics of the ionosphere and magnetic fields disturbances above all the observation points. Long data sets recorded at different stations were used to verify and confirm our technique of the reconstruction of F2 layer critical frequency – f0F2 from SRS frequency spacing. Also we have detected and studied new effect of splitting of the IAR maximums on two satellites.

References

  1. Bezrodny`j, V.G., Budanov, O.V., Koloskov, A.V. et al. E`lektromagnitnoe okruzhenie Zemli v SNCh-diapazone [Electromagnetic surroundings of the Earth in the VLF range]. Kosmichna nauka ta tekhnolohiia, 9(5/6), 117–123.
  2. Belyaev, P.P., Polyakov, S.V., Rapoport, V.O. et al. (1989). Teoriya formirovaniya rezonansnoj struktury` spektra atmosfernogo e`lektromagnitnogo shumovogo fona v diapazone korotkoperiodny`x geomagnitny`x pul`sacij [The theory of formation of the resonance structure of the atmospheric electromagnetic noise background in the short-period range of geomagnetic pulsations]. Izvestiya vy`sshix uchebny`x zavedenij, 32(7), 802–810.
  3. Belyaev, P.P., Polyakov, S.V., Rapoport, V.O. et al. (1989). E`ksperimental`ny`e issledovaniya rezonansnoj struktury` spektra atmosfernogo e`lektromagnitnogo shumovogo fona v diapazone korotkoperiodny`x geomagnitny`x pul`sacij [Experimental research of the resonance structure of the spectrum of the atmospheric electromagnetic noise background in the short-period rnage of geomagnetic pulsations]. Izvestiya vy`sshix uchebny`x zavedenij, 32(6), 663–672.
  4. Koloskov, A.V., & Baru, N.A. (2011-2012). Opredelenie kriticheskoj chastoty` F-sloya po danny`m nablyudenij ionosfernogo al`fvenovskogo rezonansa [Determining the critical frequency of the F-layer by observation data of the ionospheric Alfven resonance]. Ukrainian Antarctic Journal, 10-11, 114–120.
  5. Koloskov, A.V., Bezrodny`j, V.G., Budanov, O.V. et al. (2005). Polyarizacionny`j monitoring shumanovskix rezonansov v Antarktike i vosstanovlenie xarakteristik mirovoj grozovoj aktivnosti [Polarization monitoring of the Schumann resonances in Antarctica and recovering the world lightning activity]. Radiofizika i Radioastronomiya, 10(1), 11–29.
  6. Koloskov, A.V., Sinicyn, V.G., Gerasimova, N.N. et al. (2008). Okolozemny`e rezonatory` SNCh-voln kak indikatory` kosmicheskoj pogody` [Near-Earth resonators of VHF waves as indicators of space weather]. Kosmіchna nauka і texnologіya, 14(5), 49–64.
  7. Kuz`min, A.V., & Kanaev, A.S. (2012). Sredstva vertikal`nogo radiozondirovaniya ionosfery` [The means for vertical remote sounding of the ionosphere]. Geliogeofizicheskie issledovaniya 2, 72–82.
  8. Mednikova, P.V. (1977). Rukovodstvo URSI po interpretacii i obrabotke ionogramm [The URSI guidelines to interpret and process ionograms]. Moscow, Nauka.
  9. Ostapenko, A.A., Polyakov, S.V. (1990). Dinamika koe`fficienta otrazheniya al`fvenovskix voln diapazona Pc1 ot ionosfery` pri variaciyax e`lektronnoj koncentracii nizhnej ionosfery` [Dynamics of the Alfven range of the Pc1 waves reflection from the ionosphere under the variations of electronic concentration in the lower ionosphere]. Geomagnetizm i Ae`ronomiya, 30(1), 50–56.
  10. Paznuxov, V.E., Budanov, O.V., Roxman, A.G. et al. (2010). Priemno-izmeritel`ny`j kompleks SNCh diapazona s UKV retranslyatorom [Registering-measuring complex of the VLF range with a VHF retranslator]. Radiofizika i Radioastronomiya, 15(1), 31–41.
  11. Polyakov, S.V., & Rapoport, V.O. (1981). Ionosferny`j Al`fvenovskij Rezonator [Ionosphere Alfven Resonator]. Geomagnetizm i Ae`ronomiya, 21, 816–822.
  12. Belyaev, P.P., Bosinger, T., Isaev, S.V. et al. (1999). First evidence at high latitudes for the ionospheric Alfven resonator. Journal of geophysical research, 104(A3), 4305–4317.
  13. Belyaev, P.P., & Polyakov, S.V., Ermakova, E.N. et al. (2000). Solar cycle variations in the ionospheric Alfven resonator 1985–1995. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 239–248.
  14. Bosinger, T., Haldoupis, C., Belyaev, P.P. et al. (2002). Spectral properties of the ionospheric Alfvеn resonator observed at a low-latitude station (L = 1.3). Journal of geophysical research, 107(A10), 1281.
  15. Demekhov, A.G., Belyaev, P.P., Isaev, S.V. et al. (2000). Modelling the diurnal evolution of the resonance spectral structure of the atmospheric noise background in the Pc 1 frequency range. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 257-65.
  16. Kivelson, M.G., & Southwood, D.J. (1986). Coupling of global magnetospheric MHD eigenmodes to field line resonances. J. Geophys. Res., 91, 4345.
  17. Pavlov, A.V., & Pavlova, N.M. (2009). Anomalous variations of NmF2 over the Argentine Islands: a statistical study. Annales Geophysicae, 27, 1363–1375.
  18. Satori, G., Williams, E. & Mushtak, V. (2005). Response of the Earth–ionosphere cavity resonator to the 11-year solar cycle in X-radiation. Journal of Atmospheric and Solar-Terrestrial Physics, 67(6), 553–562.
  19. Shi Run, Zhao Zheng-Yu, Zhang Bei-Chen. (2010). Study of the influence of IAR on geomagnetic signal observed on the ground. Chinese journal of geophysics, 53(5), 693–793.