Ukrainian Antarctic Journal

No 10-11 (2012): Ukrainian Antarctic Journal
Articles

A study of the paleointensity and paleodirections of the geomagnetic field of Cretaceous and Paleocene ages employing rocks of the Western Antarctica

V. V. Shcherbakova
Borok Geophysical Observatory Branch of the Federal State Budgetary Institution of Science Schmidt Institute of Physics of the Earth of the RAS, Yaroslav obl.
V. G. Bakhmutov
Institute of Geophysics by S. I. Subbotin name, NAS of Ukraine, Kyiv
V. P. Shcherbakov
Borok Geophysical Observatory branch of the Federal state budgetary institution of science Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Yaroslav obl.
G. V. Zhidkov
Borok Geophysical Observatory branch of the Federal state budgetary institution of science Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Yaroslav obl.
V. V. Shpyra
Institute of Geophysics by S. I. Subbotin name, NAS of Ukraine, Kyiv
Yu. K. Vinogradov
Borok Geophysical Observatory branch of the Federal state budgetary institution of science Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Yaroslav obl.
Published December 31, 2012
Keywords
  • Antarctic Peninsula,
  • palaeomagnetism,
  • palaeointensity,
  • Cretaceous Normal Superchron,
  • rock and mineral magnetism
How to Cite
Shcherbakova, V. V., Bakhmutov, V. G., Shcherbakov, V. P., Zhidkov, G. V., Shpyra, V. V., & Vinogradov, Y. K. (2012). A study of the paleointensity and paleodirections of the geomagnetic field of Cretaceous and Paleocene ages employing rocks of the Western Antarctica. Ukrainian Antarctic Journal, (10-11), 48-86. https://doi.org/10.33275/1727-7485.10-11.2012.288

Abstract

A combined palaeodirectional and palaeointensity studies of a representative collection of plutonic rocks from the western part of Antarctic Peninsula, near the Ukrainian Antarctic base “Academik Vernadsky” were carried out. Chemically, the collection includes gabbros, diorites and quartz diorites, tonalities, granodiorites and granites. The ages of igneous complex vary from 50 to 117 Ma, most of rocks belong to the Cretaceous Normal Superchron. The characteristic remanent magnetization was isolated by stepwise thermal demagnetization in temperature interval 440-590°C and its intensity amounts to 95% of NRM. The geographic positions of palaeopoles do not contradict to the ‘key poles’ of the Antarctic Peninsula for Late Cretaceous and Paleocene. A significant part of collection was subjected to Coe-modified Thellier protocol with the pTRM check procedure and seven reliable palaeointensity determinations are obtained for seven different locations. VDMs obtained are relatively low for all sites, being in average about a half of the present day VDM. The analysis of available palaeointensity data for the Cretaceous, Miocene and Middle Jurassic indicates an inverse correlation between both the mean value and dispersion of VDMs versus the rate of reversals calculated for these periods.

References

  1. Baxmutov, V.G. (1998). Geologicheskij obzor arxipelaga Argentinskie ostrova i prilegayushhej territorii Antarkticheskogo poluostrova. Bulletin UAC, 2, 77–84.
  2. Baxmutov V.G., & Tretyak, A.N. (2002). Rezul`taty` paleomagnitny`x issledovanij mezozojsko-rannekajnozojskix porod Zapadnoj Antarktiki (rajon arxipelaga Argentinskie ostrova). Geofizicheskij zhurnal, 24(4), 28–41.
  3. Bol`shakov, A.S., & Solodovnikov, G.M. (1981a). Napryazhyonnost` geomagnitnogo polya v poslednie 400 millionov let [The geomagnetic field intensity over the last 400 myr]. Dokl. AN SSSR, 260(6), 1340–1343.
  4. Bol`shakov, A.S., & Solodovnikov, G.M. (1981b). O napryazhyonnosti geomagnitnogo polya v pozdnemelovoe vremya [On the geomagnetic field intensity in late Cretaceous period]. Izv. AN SSSR. Fizika Zemli, 10, 58–68.
  5. Bol`shakov, A.S., & Solodovnikov, G.M. (1983). Napryazhyonnost` geomagnitnogo polya v Armenii v pozdnej yure i rannem melu [The geomagnetic field intensity in Armenia in late Jurassic and early Cretaceous]. Izv. AN SSSR. Fizika Zemli, 12, 82–90.
  6. Bol`shakov, A.S., Solodovnikov, G.M., & Vinogradov, Yu.K. (1987). Paleonapryazhyonnost` geomagnitnogo polya v rannej i srednej yure [Geomagnetic field paleointensity in early and middle Jurassic]. Izv. AN SSSR. Fizika Zemli, 4, 72–83.
  7. Burakov, K.S. (1973). Metod opredeleniya napryazhennosti geomagnitnogo polya po krivy`m termorazmagnichivaniya In i Irt [A method to determine geomagnetic field intensity by thermal degaussing curves In and Irt]. Materialy` IX konferencii po voprosam postoyannogo geomagnitnogo polya, magnetizmu gorny`x porod i paleomagnetizmu. Ch. 2. Baku. 1973. pp. 56–57.
  8. Gladkochub, D.P., Baxmutov, V.G., Vodovozov, V.Yu., & Vashhenko, V.M. (2009). Andijskij kompleks Zapadnoj Antarktiki: vozrast, sostav, geodinamicheskaya poziciya [Andean complex of West Antarctica: age, composition, geodynamic position]. Materialy` XLII Tektonicheskogo soveshhaniya "Geologiya polyarny`x oblastej Zemli". Moscow, GEOS. pp. 132–134.
  9. Grikurov, G.E`. (1973). Geologiya Antarkticheskogo poluostrova [Geology of the Antarctic Peninsula]. Moscow, Nauka.
  10. Orlova, M.I. (1999). Komponentny`j sostav estestvennoj ostatochnoj namagnichennosti mezozojskix obrazovanij Argentinskix ostrovov (Antarkticheskij poluostrov) [The components of natural residual magnetization of the mezosoic accretions of Argentine Islands]. Geofizicheskij zhurnal, 21(5), 49–56.
  11. Orlova, M.I. (2001). Kinematicheskaya e`volyuciya intruzivny`x obrazovanij Argentinskix ostrovov (Antarkticheskij poluostrov) [Kinematic evolution of intrusive accretions of Argentine islands (Antarctic Peninsula)]. Geofizicheskij zhurnal, 23(1), 108–114.
  12. Solodovnikov, G.M. (2001). Opredeleniya napryazhyonnosti magnitnogo polya Zemli v santon-kon`yake verxnego mela, poluchenny`e na e`ffuzivnom razreze Azerbajdzhana [Values of the Earth’s magnetic field intensity in the Santon-Cognac of the Upper Cretaceous determined for the effusive section of Azerbaijan]. Fizika Zemli, 7, 78–84.
  13. Shherbakov, V.P., Sy`chyova, N.K., & Shherbakova, V.V. (2008). E`volyuciya velichiny` magnitnogo momenta Zemli v geologicheskom proshlom [Evolution of the Eart’s magnetic moment value in the geologic past]. Geofizicheskie issledovaniya, 9(2), 7–24.
  14. Shherbakov, V.P., & Sy`chyova, N.K. (2009). Chislennoe modelirovanie processa obrazovaniya namagnichennosti osazhdayushhejsya suspenzii gorny`x porod [Numerical modelling of the magnetization of the accreting suspension of the rock]. Fizika Zemli, 1, 51–60.
  15. Shherbakova, V.V., Shherbakov, V.P., Vodovozov, V.Yu., & Sy`chyova, N.K. (2005). Paleonapryazhyonnost` na granice perm`-trias i v pozdnej permi [Paleointensity at the border of Permian and Triassic and in late Permian]. Fizika Zemli, 11, 79–94.
  16. Shherbakova, V.V., Zhidkov, G.V., & Shherbakov, V.P. (2008). O povtornom opredelenii paleonapryazhyonnosti v melu po kollekcii A.S. Bol`shakova i G.M. Solodovnikova [On the repeated determination of paleomagnetisation in the Cretaceous on the collection of A. S. Bolshakov and G.M. Solodovnikov]. Fizika Zemli, 10, 69–74.
  17. Besse, J., & Courtillot, V. (2002). Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res., 107(B11), 2300.
  18. Biggin, A.J., & Thomas, D.N. (2003). The application of acceptance criteria to results of Thellier palaeointensity experiments performed on samples with pseudo-single-domain-like characteristics. Phys. Earth Planet. Inter., 138(3-4), 279–287.
  19. Blundell, D.J. (1962). Palaeomagnetic investigations in the Falkland Islands Dependencies. British Antarctic Survey Scientific Reports, 39, 1–24.
  20. Chadima, M., & Hrouda, F. (2006). Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques, XXVII, 20–21.
  21. Coe, R.S. (1967). The determination of paleointensities of the Earth's magnetic field with special emphasize on mechanisms which could cause nonideal behavior in Thellier's method. J. Geomagn. Geoelec., 19(3), 157–179.
  22. Coe, R.S., Grommé, S., & Mankinen, E.A. (1978). Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res., 83(B4), 1740–1756.
  23. Cox, A. (1968). Lengths of geomagnetic polarity intervals. J. Geophys. Res., 73(10), 3247–3260.
  24. Constable, C.G., Tauxe, L., & Parker, R.L. (1998). Analysis of 11 Myr of geomagnetic intensity variation. J. Geophys. Res., 103(B8), 17735–17748.
  25. Curtis, R. (1966). The petrology of the Graham Coast, Graham Land. British Antarctic Survey Sci.Rep., 50, 1–51.
  26. Dalziel, I.W.D., Lowtie, W., Kligfield, R., & Opdyke, N.D. (1973). Paleomagnetic data from the southernmost Andes and the Antarctandes. In D.H. Tarling, & S.K. Runcorn (Eds.), Implications of Continental Drift to the Earth Sciences. pp. 87–101. Academic Press, New York.
  27. Dalziel, I.W.D., & Elliot, D.H. (1982). West Antarctica: problem child of Gondwanaland. Tectonics, 1, 3–19.
  28. Day, R., Fuller, M., & Schmidt, V.A. (1977). Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Phys. Earth Planet. Inter., 13(4), 260–267.
  29. De Wit, M.J., Dutch, S., Kligfield, R., Allen, R.R., & Stern, C. (1977). Deformation, serpentinization and emplacement of a dunite complex, Gibbs Island, South Shetland Islands: possible fracture zone tectonics. J. Geol., 85(6), 745–762.
  30. Dodson, M.H., & McClelland-Brown, E. (1980). Magnetic blocking temperatures of single-domain grains during slow cooling. J. Geophys. Res., 85(B5), 2625-2637.
  31. Elliot, D.H. (1964). The petrology of the Argentine Islands. British Antarctic Survey Rep.
  32. Ferraccioli, F., Jones, P.C., Vaughan, A.P., & Leat, P.T. (2006). New aerogeophysical view of the Antarctic Peninsula: more pieces, less puzzle. Geophys. Res. Lett., 33.
  33. Fleming, E.A., & Thomson, J.W. (1979). Northern Graham Land and South Shetland Islands. In British Antarctic Territory Geological Map, 1:500.000 scale. British Antarct. Surv. Cambridge.
  34. Goguitchaichvili, A., Alva Valdivia, L.M., Urrutia Fucugauchi, J., Morales Contreras, J., & Ferreira Lopes, O. (2002). On the reliability of Mesozoic Dipole Low: New absolute paleointensity results from Paraná Flood Basalts (Brazil). Geophys. Res. Lett., 29(13), 1655.
  35. Goguitchaichvili, A., Alva Valdivia, L.M., Rosas Elguera, J., Urrutia Fucugauchi, J., & Solé, J. (2004). Absolute geomagnetic paleointensity after the Cretaceous Normal Superchron and just prior to the Cretaceous-Tertiary transition. J. Geophys. Res., 109(B1), B01105.
  36. Gradstein, F.M., Ogg, J.G., & Smith, A.G. (2004). A Geologic Time Scale 2004. Cambridge, New York, Melbourne: Cambridge University Press.
  37. Grunow, A. (1993). New paleomagnetic data from Antarctic Peninsula and their tectonic implication. J. Geophys. Res., 98(B8), 13815–13833.
  38. Guenthner, W.R., Barbeau, D.L., Jr., Reiners, P.W., & Thomson, S.N. (2010). Slab window migration and terrane accretion preserved by low-temperature thermochronology of a magmatic arc, northern Antarctic Peninsula. Geochem. Geophys. Geosyst., 11(3), Q03001.
  39. Halgedahl, S.L., Day, R., & Fuller, M. (1980). The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite. J. Geophys. Res., 85(B7), 3690-3698.
  40. Harris, N. (1996). Radiogenic isotopes and the interpretation of granitic rocks. Episodes, 19(4), 107–113.
  41. Heunemann, C., Krása, D., Soffel, H.C., Gurevitch, E., & Bachtadse, V. (2004). Directions and intensities of the Earth's magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia. Earth Planet. Sci. Lett., 218(1-2), 197–213.
  42. Hooper, P.R. (1962). The petrology of Anvers Island and adjacent islands. British Antarctic Survey Rep.
  43. Juarez, M.T., Tauxe, L., Gee, J.S., & Pick, T. (1998). The intensity of the Earth's magnetic field over the past 160 million years. Nature, 394(6696), 878–881.
  44. Kellogg, K., & Reynolds, R. (1978). Paleomagnetic results from the Lassiter Coast, Antarctica, and a test for oroclinal bending of the Antarctic Peninsula. J. Geophys. Res., 83(B5), 2293–2299.
  45. Kellogg, K. (1980). Paleomagnetic evidence for oroclinal bending of the southern Antarctic Peninsula. Geol. Soc. Am. Bull., 91, 414–420.
  46. Kirschvink, J.L. (1980). The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc., 62, 699–718.
  47. Larson, R.L., & Olson, P. (1991). Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett., 107(3-4), 437–447.
  48. Leat, P.T., Scarrow, J.H., & Millar, I.L. (1995). On the Antarctic Peninsula batholith. Geol. Mag., 132(4), 399–412.
  49. Lewandowski, M., Werner, T., & Nowozynski, K. (1997). PDA-apackage of Fortran programs for palaeomagnetic data analysis. Inst. Geophys. Pol. Acad. Sci. Manuscript. pp. 1–17.
  50. Longshaw, S.K., & Griffiths, D.H. (1983). A palaeomagnetic study of Jurassic rocks from the Antarctic Peninsula and its implications. J. Geol. Soc., 140(6), 945–954
  51. Loper, D.E., & McCartney, K. (1986). Mantle plumes and the periodicity of magnetic field reversals. Geophys. Res. Lett., 13(13), 1525–1528.
  52. McClelland-Brown, E. (1984). Experiments on TRM intensity dependence on cooling rate. Geophys. Res. Lett., 11(3), 205–208.
  53. Nawrocki, J., Panczyk, M., & Williams, I.S. (2010). Isotopic ages and palaeomagnetism of selected magmatic rocks from King George Island (Antarctic Peninsula). J. Geol. Soc., 167(5), 1063–1079.
  54. Néel, L. (1955). Some theoretical aspects of rock-magnetism. Adv. Phys., 4(14), 191–243.
  55. Pankhurst, R.J. (1982). Rb-Sr geochronology of Graham Land, Antarctica. J. Geol. Soc., 139(6), 701–711.
  56. Pankhurst, R.J. (1983). Rb-Sr constraints on the ages of basement rocks of the Antarctic Peninsula, in Antarctic Earth Science. In R.L. Oliver, P.R. James, & J.B. Jago, (Eds.). Fourth International Symposium, Adelaide, Australia. pp. 367–371. Cambridge University Press, New York.
  57. Pares, J.M., & Dinares, J.T. (1999). Datos paleomagnéticos del sustrato rocoso de la isla de Livingston (Península Antártica): implicaciones tectónicas en la evolución neógena. Acta Geol. Hisp., 34(4), 339–352.
  58. Perrin, M., & Schnepp, E. (2004). IAGA paleointensity database: distribution and quality of the data set. Phys. Earth Planet. Inter., 147(2-3), 255–267.
  59. Perrin, M., & Shcherbakov, V.P. (1997). Paleointensity of the Earth's magnetic field for the past 400Ma: Evidence for a Dipole structure during the Mesozoic Low. J. Geomagn. Geoelec., 49(4), -601–614.
  60. Pick, T., & Tauxe, L. (1993). Geomagnetic palaeointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature, 366(6452), 238–242.
  61. Poblete, F., Arriagada, C., Roperch, P., Astudillo, N., Herve, F., Kraus, S., & Le Roux, J.P. (2011). Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula // Earth Planet. Sci. Lett., 302(3-4), 299–313.
  62. Prévot, M., Derder, M.E.-M., McWilliams, M., & Thompson, J. (1990). Intensity of the Earth's magnetic field: Evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett., 97(1-2), 129–139.
  63. Rex, D.C. (1976). Geochronology in relation to the stratigraphy of the Antarctic Peninsula. Br. Antarct. Surv. Bull., 43, 49–58.
  64. Riley, T.R., Leat, P.T., Pankhurst, R.J., & Harris, C. (2001). Origins of large volume rhyolitic volcanism in the Antarctic Peninsulal and Patagonia by crustal melting. Journal of Petrology, 42(6), 1043–1065.
  65. Sakai, H., Funaki, M. (1988). Paleomagnetic study of the Beacon supergroup in Antarctica: remagnetization in the Jurassic time. Proceedings of the NIPR Symposium on Antarctic Geosciences. pp. 46–54.
  66. Shcherbakova, V.V., Shcherbakov, V.P., & Heider, F. (2000). Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains. J. Geophys. Res., 105(B1), 767–781.
  67. Shcherbakova, V.V., Perrin, M., Shcherbakov, V.P., Pavlov, V.E., Ayvaz'yan, A., & Zhidkov, G.V. (2009). Rock magnetic and paleointensity results from Mesozoic baked contacts of Armenia. EPS, 61(1), 23–39.
  68. Smirnov, A.V., & Tarduno, J.A. (2005). Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak? J. Geophys. Res., 110(B6), B06103.
  69. Storey, B.C., & Garrett, S.W. (1985). Crustal growth of the Antarctic Peninsula by accretrion, magmatism and extension. Geol. Mag., 122, 5–14.
  70. Tangeman, J.A., Mukasa, S.B., & Grunow, A.M. (1996). Zircon U-Pb geochronology of plutonic rocks from the Antarctic Peninsula: Confirmation of the presence of unexposed Paleozoic crust. Tectonics, 15(6), 1309–1324.
  71. Tarduno, J.A., & Cottrell, R.D. (2005). Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals. J. Geophys. Res., 110(B11), B11101.
  72. Tarduno, J.A., Cottrell, R.D., & Smirnov, A.V. (2001). High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science, 291(5509), 1779–1783.
  73. Tarduno, J.A., Cottrell, R.D., & Smirnov, A.V. (2006). The paleomagnetism of single silicate crystals: Recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth. Rev. Geophys., 44(1), RG1002.
  74. Tauxe, L. (2006). Long-term trends in paleointensity: The contribution of DSDP/ODP submarine basaltic glass collections. Phys. Earth Planet. Inter., 156(3-4), 223–241.
  75. Tauxe, L., & Staudigel, H. (2004). Strength of the geomagnetic field in the Cretaceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite. Geochem. Geophys. Geosyst., 5(2), Q02H06.
  76. Thellier, E., & Thellier, O. (1959). Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys., 15, 285–376.
  77. Thompson, M.R.A., & Pankhurst, R.J. (1983). Age of Post-Gondwanian calc-alkaline volcanism in the Antarctic Peninsula region. In R.L. Oliver, P.R. James, & J.B. Jago (Eds.). Antarctic Earth Science, Australian Academy of Science, Canberra. pp. 328–333.
  78. Torsvik, T.H., Gaina, C., & Redfield, T.F. (2008). Antarctica and global paleogeography: from Rodinia, through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways, in Antarctica. In A.K. Cooper, P.J. Barret, H. Stagg, B. Storey, E. Stump, W. Wise, & the 10th ISAES Editorial Team (Eds.). A keystone in a changing world: proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, USA, 2008. pp. 125–140. National Academies Press, Washington.
  79. Valencio, D.A., Mendia, J.E., & Vilas, J.F. (1979). Palaeomagnetism and K–Ar age of Mesozoic and Cenozoic igneous rocks from Antarctica. Earth Planet. Sci. Lett., 45(1), 61–68.
  80. Valet, J.-P. (2003). Time variations in geomagnetic intensity. Rev. Geophys., 41(1), 1004.
  81. Vaughan, A.P.M., & Storey, B.C. (2000). The Eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. Journal of the Geological Society, London, 157(6), 1243-1256.
  82. Watts, D.R., Watts, G.C., & Bramall, A.M. (1984). Cretaceous and Early Tertiary paleomagnetic results from the Antarctic Peninsula. Tectonic, 3(3), P. 333–346.
  83. Weaver, S.D., Saunders, A.D., & Tarney, J. (1982). Mesozoic-Cenozoic volcanism in the South Shetland Islands and the Antarctic Peninsula: geochemical nature and plate tectonic significance. In Craddock C. (Ed.). Antarctic Geoscience, 63–273. University of Wisconsin Press, Madison.
  84. Willan, R.C., & Kelley, S.P. (1999). Mafic dike swarms in the South Shetland Islands volcanic arc: unravelling multiepisodic magmatism related to subduction and continental rifting. J. Geophys. Res., B10, 3051-3068.
  85. Wilson, R.L. (1961). The thermal demagnetization of natural magnetic moments in rocks. Geophys. J. R. Astron. Soc., 5(1), 45–58.
  86. Winklhofer, M., Fabian, K., & Heider, F. (1997). Magnetic blocking temperatures of magnetite calculated with a three-dimensional micromagnetic model. J. Geophys. Res., 102(B10), 22695–22709.
  87. Zhu, R., Pan, Y., He, H., Qin, H., & Ren, S. (2008). Palaeomagnetism and 40Ar/39Ar age from a Cretaceous volcanic sequence, Inner Mongolia, China: Implications for the field variation during the Cretaceous normal superchron. Phys. Earth Planet. Inter., 169(1-4), 59–75.