Ukrainian Antarctic Journal

No 10-11 (2012): Ukrainian Antarctic Journal
Articles

Multiple resistance to toxic metals of the Antarctic cliff microorganisms (island Galindez)

A. B. Tashyrev
Institute of Microbiology and Virology of the NASU, Kyiv
V. A. Romanovskaya
Institute of Microbiology and Virology of the NASU, Kyiv
P. V. Rokitko
Institute of Microbiology and Virology of the NASU, Kyiv
A. A. Tashyreva
Institute of Microbiology and Virology of the NASU, Kyiv
Published December 31, 2012
Keywords
  • Antarctic cliffs,
  • microorganisms,
  • toxic metals,
  • multiple metal resistance
How to Cite
Tashyrev, A. B., Romanovskaya, V. A., Rokitko, P. V., & Tashyreva, A. A. (2012). Multiple resistance to toxic metals of the Antarctic cliff microorganisms (island Galindez). Ukrainian Antarctic Journal, (10-11), 212-221. https://doi.org/10.33275/1727-7485.10-11.2012.301

Abstract

The focus of the study is multiple resistance to five toxic metals of 10 microbial strains isolated from the cliffs of Antarctic island Galindez (Vernadsky station). The growth of strains in presence metals which posses replacing (Ni2+, Co2+), oxidative properties (CrO42–) and metals of the "combined" action   (Hg2+, Cu2+), both replacing and oxidizing agents, had been studied. The microorganisms were isolated on agar medium containing no metal, and then were grown in liquid medium containing one of these metals. Increasing the concentration of metals in the media naturally decreased the number of viable strains. Thus, all 10 strains were resistant to 0.1 g/l Cu2+, 0.4 g/l - 3 strains, 1.0 g/l - 2 strains, and at 1.25 g/l - only one strain. The highest sensibility strains showed to Hg2+ - which is high potential metal ion (Ео'= + 920 mV), replacing metals in cell enzymes. At a concentration 0.01 g/l Hg2+ grew 6 of 10 strains, and at 0.05 g/l - only 1 strain. The most resistant microorganisms were in relation to Cr(VI). At chromium concentration in cultivation media 1.25 g/l, 2.0 and 20.0 g/l grew, respectively, 8, 3 and 1 strains. The following range of resistance of strains towards specified toxic metal ions is obtained (in g/l): 20.0 Cr(VI) > 2.0 Ni2+ > 1.25 Cu2+ > 0.1 Cо2+ > 0.05 Hg2+.  Strain 190n2 showed maximal resistance to metals, it grew at high concentrations of all five metals. Thus, we have shown that Antarctic cliff microorganisms are polyresistant to five the most toxic metals that combine the damaging effects of replacing and oxidizing metals, and metals of combined action.

References

  1. Kashner, D. (Ed.) (1981). Zhizn` mikrobov v e`kstremal`ny`x usloviyax [Microbes’ life in extreme conditions]. Moscow, Mir.
  2. Ilyaletdinov, A., Abdrashitova, S., Ajtkel`dieva, S. et al. (1989). Polireduktaznaya aktivnost` bakterij [Bacteria’s polyreductase activity]. Izv. AN SSSR. Ser. biol., 2, 260–266.
  3. Kvasnikov, E., Klyushnikova, T., Kasatkina, T. et al. (1988). Rezistentnost` bakterij roda Pseudomonas k soedineniyam shestivalentnogo xroma i sposobnost` k ego vosstanovleniyu [The resistance of the bacteria of Pseudomonas to six-valent Cr and ability for its reduction]. Mikrobiol. zhurn., 50(6), 24-27.
  4. Kushkevych, I., Hnatush, S., & Hudz, S. (2007). Vplyv vazhkykh metaliv na klityny mikroorhanizmiv [The effect of heavy metals on microorganisms’ cells]. Visnyk Lvivskoho universytetu. Seriia biolohichna, 45, 3–28.
  5. Gerxardt, F. (Ed.). (1984). Metody` obshhej bakteriologii [Methods of common bacteriology]. Moscow, Mir. Vol. 3.
  6. Petrova, M., Mindelin, S., Gorlenko, Zh. et al. (2002). Rezistentny`e k soedineniyam rtuti bakterii iz mnogoletnemerzly`x otlozhenij i perspektivy` ix ispol`zovaniya v sravnitel`ny`x issledovaniyax determinant rtut`-ustojchivosti [Resistant to Hg compounds bacteria from multi-year-frozen sediments and the perspectives of their use in the comparative research of determinants of Hg-resistance]. Genetika, 38(11), 1–6.
  7. Romanovskaya, V., Tashirev, A., Shilin, S. et al. (2011). Ustojchivost` k UF radiacii antarkticheskix mikroorganizmov [UV-radiation resistance of antarctic microorganisms]. Mikrobiol. zhurnal, 73.
  8. Tashirev, A. (1994a). Teoreticheskie aspekty` vzaimodejstviya mikroorganizmov s metallami. Vosstanovitel`naya transformaciya metallov [Theoretical aspects of microorganisms’ interaction with metals. Reduction transformation of metals]. Mіkrobіol. zhurn., 56(6), 76–88.
  9. Tashirev, A. (1994b). Vzaimodejstvie mikroorganizmov s metallami [Microorganisms’ interactions with metals]. Mikrobiol. zhurnal, 56(6), S. 89–100.
  10. Tashirev, A. (1995). Teoreticheskie aspekty` vzaimodejstviya mikroorganizmov s metallami. Mikrobnaya akkumulyaciya metallov, obuslovlennaya ix stereoximicheskoj analogiej s makroe`lementami [Theoretical aspects of microorganisms’ interaction with metals. Microbial accumulation of metals caused by their stereochemical analogy with macroelements]. Mikrobiol. zhurnal, 57(2), 95–104.
  11. Tashirev, A., Matveeva, N., Romanovskaya, V. et al. (2007). Polirezistentnost` i sverxustojchivost` k tyazhyoly`m metallam antarkticheskix mikroorganizmov [Polyresistance and superresistance to heavy metals in antarctic microorganisms]. Dopovidi Natsionalnoi Akademii nauk Ukrainy, 11, 170–175.
  12. Tashirev, A., Romanovskaya, V., Sioma, I. et al. (2008). Antarkticheskie mikroorganizmy`, ustojchivy`e k vy`sokim koncentraciyam Hg2+, Cu2+, Cd2+ и СrО42– [Antarctic microorganisms, resistant to hugh concentrations of Hg2+, Cu2+ and Cr)42-]. Dopovidi Natsionalnoi Akademii nauk Ukrainy, 1, 169–176.
  13. Babich, H., & Stotzky, R. (1981). Compounds of water hardness which reduce the toxicity of nickel to fungi. Microbiol. Lett., 18(69), 17–24.
  14. Bowman, J.P., Sly, L.I., & Hayward, A.C. (1990). Patterns of tolerance to heavy metals among methane-utilizing bacteria. Lett. Appl. Microbiol., 10(2), 85–87.
  15. Langenbach, T., Nascimento, A., & Sarpa, M. (1988). Influence of heavy metals on nitrogen fixation and growth of Azospirillum strains. Rev. Latinoamer. Microbiol., 30(2), 139–142.
  16. Naidu, Ramachandra R.T.K. (1988). Protection of cadmium, toxicity to Bacillus cereus, Escherichia coli and Aspergillus niger. Zbl. Mikrobiol., 143(5), 383–387.
  17. Pourbaix, M. (1963). Atlas of electrochemical equilibrium in aqueous solutions. Oxford, Pergamon press.
  18. Silver, S., & Phung, L.T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol, 32, 587–605.
  19. Tashyrev, O. (2009). The Complex Researches of Structure and Functions of Antarctic Terrestrial Microbial Communities. Ukrainian Antarctic Journal, 8, 228–242.
  20. Tashyrev, A., Rokitko, P., & Matvieieva, N. et al. (2009). Occurrence of Metalresistant Microorganisms on Islands of the Internal Shelf of the Antarctic Peninsula. Ukrainian Antarctic Journal, 8, 198–205.
  21. Towiner, S. (1976). Copper sulfate helps control microorganisms in reservoirs. Water and Sewage Works, 123(12), 68–70.