Ukrainian Antarctic Journal

No 1 (2020): Ukrainian Antarctic Journal
Articles

Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data

O. Ivaniha
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Published July 7, 2020
Keywords
  • ozone hole,
  • planetary waves,
  • climatology,
  • zonal asymmetry,
  • MERRA-2,
  • CMIP6
  • ...More
    Less
How to Cite
Ivaniha, O. (2020). Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data. Ukrainian Antarctic Journal, (1), 41-55. https://doi.org/10.33275/1727-7485.1.2020.378

Abstract

Objectives. To analyze ozone monthly mean data from the MERRA-2 reanalysis and CMIP6 model. To determine Antarctic ozone asymmetry climatology for austral spring months (September, October, November) over the 1980–2014 period. Methods. Processing and visualization of the MERRA-2, CMIP6 data on total ozone and ozone partial pressure, following analysis, interpretation, and comparison. Getting 2D (total ozone column) and 3D (ozone partial pressure) monthly mean ozone values for the zonal band (0°–90° S) at pressure levels (1000–0.1 hPa) for each month of the chosen period. Calculating climatology of the total ozone and ozone partial pressure. Comparison of model and reanalysis of results. Results. The amplitude of ozone zonal asymmetry was calculated to provide the monthly, latitudinal, longitudinal and altitudinal analysis. It is shown that the largest ozone zonal asymmetry is observed in spring, especially in October, with dominant wave-1 structure with zonal minimum over 0°–90° W, and maximum over 120°–180° E longitudinal sectors. The area with high ozone content is located at the 40°–80° S zonal band and gradually shifts to the south from September to November. The model underestimates amplitude of ozone zonal asymmetry, especially in October. Conclusions. Latitudinal mean maximums in zonal mean ozone distribution are observed over 62° S, in October over 66° S, and in November over 68° S for MERRA-2 and over 64° S, 65° S and 66° S respectively for CMIP6. The poleward shift of ozone latitude maximum continues until March with decreasing of ozone level, but in April, the shift reverses its direction to equatorward and ozone level starts to increase, however in the model this process is slower. In September the shift again becomes poleward. In the longitudinal distribution wave-1 pattern dominates with a shift of longitude ozone minimum. From September to October the shift is eastward, and from October to November westward by MERRA-2 data and only eastward by CMIP6 data. The highest difference in altitude ozone distribution is observed during October in the stratosphere between ozone zonal minimum and maximum points and reaches approximately 68% (44%) of the zonal average value at 65° S (65.4° S) by MERRA-2 (CMIP6) data. MERRA-2 profiles unlike CMIP6 one show higher location of altitudinal maximum over the zonal minimum and lower over the zonal maximum with the zonal mean in the middle. All three CMIP6 profiles have the same height of altitude maximum.

References

  1. Austin, J., Struthers, H., Scinocca, J., Plummer, D.A., Akiyoshi, H., Baumgaertner, A.J.G., Bekki, S., Bodeker, G.E., Braesicke, P., Brühl, C., Yamashita, Y.: Chemistry-climate model simulations of spring Antarctic ozone, Journal of Geophysical Research, 115 (D3), D00M11, 2010. https://doi.org/10.1029/2009JD013577
  2. Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris,P., Suarez, M.: MERRA-2: Initial Evaluation of the Climate, Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2015-104606, 43, edited by: Koster, R.D., Goddard Space Flight Center, Greenbelt, Maryland, 139 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf, 2015, last access: 23 February 2020.
  3. Bozem, H., Butler, T.M., Lawrence, M.G., Harder, H., Mar tinez, M., Kubistin, D., Lelieveld, J., Fischer, H.: Chemical processes related to net ozone tendencies in the free troposphere, Atmospheric Chemistry and Physics, 17, 10565-10582, 2017. https://doi.org/10.5194/acp-17-10565-2017
  4. Brewer, A.W.: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Quarterly Journal of the Royal Meteorological Society, 75 (326), 351-363, 1949. https://doi.org/10.1002/qj.49707532603
  5. Butchart, N.: The Brewer-Dobson circulation, Reviews of Geophysics, 52 (2), 157-184, 2014. https://doi.org/10.1002/2013RG000448
  6. Chapman, S.: A theory of upper atmospheric ozone, Memoirs of the Royal Meteorological Society, 3 (26), 103-125, 1929.
  7. Christiansen, B., Jepsen, N., Kivi, R., Hansen, G., Larsen, N., Korsholm, U.S.: Trends and annual cycles in soundings of Arctic tropospheric ozone, Atmospheric Chemistry and Physics, 17, 9347-9364, 2017. https://doi.org/10.5194/acp-17-9347-2017
  8. Checa-Garcia, R., Hegglin, M. I., Kinnison, D., Plummer, D. A., Shine, K. P.: Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database, Geophysical Research Letters, 45 (7), 3264-3273, 2018. https://doi.org/10.1002/2017GL076770
  9. Cionni, I., Eyring, V., Lamarque, J.F., Randel, W.J., Stevenson, D.S., Wu, F., Bodeker, G.E., Shepherd, T.G., Shindell, D.T., Waugh, D. W.: Ozone database in support of CMIP5 si mulations: results and corresponding radiative forcing, Atmospheric Chemistry and Physics, 11 (21), 11267-11292, 2011. https://doi.org/10.5194/acp-11-11267-2011
  10. Dameris, M.: Depletion of the ozone layer in the 21st century, Angewandte Chemie International Edition, 49 (3), 489-491, https://doi.org/10.1002/anie.200906334, 2010.
  11. Dennison, F., McDonald, A., Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistryclimate model, Atmospheric Chemistry and Physics, 17, 14075-14084, 2017. https://doi.org/10.5194/acp-17-14075-2017
  12. Dhomse, S.S., Kinnison, D., Chipperfield, M.P., Salawitch, R.J., Cionni, I., Hegglin, M.I., Abraham, N.L., Akiyoshi, H., Archibald, A.T., Bednarz, E.M., Zeng, G.: Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmospheric Chemistry and Physics, 18, 8409-8438, 2018. https://doi.org/10.5194/acp-18-8409-2018
  13. Dobson, G.M.B.: Origin and distribution of the polyatomic molecules in the atmosphere. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 236 (1205), 187-193, 1956. https://doi.org/10.1098/rspa.1956.0127
  14. Evtushevsky, O.M., Grytsai, A.V., Klekociuk, A.R., Milinevsky, G.P.: Total ozone and tropopause zonal asymmetry during the Antarctic spring, Journal of Geophysical Research, 113 (D7), doi:10.1029/2008jd009881, 2008. https://doi.org/10.1029/2008JD009881
  15. Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937-1958, 2016.
  16. Farman, J., Gardiner, B., Shanklin, J.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, doi:10.1038/315207a0, 1985. https://doi.org/10.1038/315207a0
  17. Frith, S.M., Kramarova, N.A., Stolarski, R.S., McPeters, R.D., Bhartia, P.K., Labow, G.J.: Recent changes in total column ozone based on the SBUV version 8.6 merged ozone data set, Journal of Geophysical Research: Atmospheres, 119 (16), 9735-9751, 2014. https://doi.org/10.1002/2014JD021889
  18. Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, American Meteorological Society, 30 (14), 5419-5454, 2017. https://doi.org/10.1175/JCLI-D-16-0758.1
  19. Gillett, N.P., Scinocca, J.F., Plummer, D.A., Reader, M.C.: Sensitivity of climate to dynamically-consistent zonal asymmetries in ozone, Geophysical Research Letters, 36 (10), 2009. https://doi.org/10.1029/2009GL037246
  20. Grytsai, A.V., Evtushevsky, O.M., Agapitov, O.V., Klekociuk, A.R., Milinevsky, G.P.: Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring, Annales Geophysicae, 25 (2), 361-374, 2007. https://doi.org/10.5194/angeo-25-361-2007
  21. Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., Stone, K.: Evolution of the eastward shift in the quasis tationary minimum of the Antarctic total ozone column, Atmospheric Chemistry and Physics, 17, 1741-1758, https://doi.org/10.5194/acp-17-1741-2017, 2017.
  22. Hegglin, M.I., Kinnison, D., Lamarque, J.-F., Plummer, D.: CCMI ozone in support of CMIP6 - version 1.0, Earth System Grid Federation, 2016.
  23. Hirooka, T., Liu, G., Eguchi, N.: Small Antarctic Ozone Hole in 2012 and 2017 and the Relationship to Dynamical Fields, in: AGU Fall Meeting Abstracts, A51S-2541, 2018.
  24. Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., Kyrölä, E.: Ozone zonal asymmetry and planetary wave characterization during Antarctic spring, Atmospheric Chemistry and Physics, 12, 2603-2614, 2012. https://doi.org/10.5194/acp-12-2603-2012
  25. Inatsu, M., Hoskins, B.J.: The zonal asymmetry of the Southern Hemisphere winter storm track, Journal of Climate, 17 (24), 4882-4892, 2004. https://doi.org/10.1175/JCLI-3232.1
  26. Ivy, D.J., Solomon, S., Kinnison, D., Mills, M.J., Schmidt, A., Neely III, R.R.: The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistryclimate model, Geophysical Research Letters, 44 (5), 2556-2561, 2017. https://doi.org/10.1002/2016GL071925
  27. Krizan, P., Kozubek, M., Lastovicka, J.: Discontinuities in the ozone concentration time series from MERRA 2 reanalysis, Atmosphere, 10 (12), 812, 2019. https://doi.org/10.3390/atmos10120812
  28. Labow, G. J., McPeters, R. D., Bhartia, P. K., Kramarova, N.: A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network, Journal of Geophysical Research: Atmospheres, 118 (13), 7370-7378, 2013. https://doi.org/10.1002/jgrd.50503
  29. Liu, X., Bhartia, P. K., Chance, K., Froidevaux, L., Spurr, R.J.D., Kurosu, T.P.: Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements, Atmospheric Chemistry and Physics, 10 (5), 2539-2549, 2010. https://doi.org/10.5194/acp-10-2539-2010
  30. McPeters, R.D., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J.P., Bhartia, P.K., Levelt, P.F.: Validation of the Aura Ozone Monitoring Instrument total column ozone product, Geophysical Research Letters, 113 (D15), D15S14, 2008. https://doi.org/10.1029/2007JD008802
  31. McPeters, R.D., Frith, S., Labow, G.J.: OMI total column ozone: extending the long-term data record, Atmospheric Measurement Techniques, 8 (11), 4845-4850, 2015. https://doi.org/10.5194/amt-8-4845-2015
  32. Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., Ivaniha, O.: Early indications of ano malous behavior in the 2019 spring ozone hole over Antarctica, E-print arXiv:1909.07574, https://arxiv.org/abs/1909.07574, 2019, last access: 17 March 2020. https://doi.org/10.1080/2150704X.2020.1763497
  33. Molod, A., Takacs, L., Suarez, M., Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geoscientific Model Development, 8, 1339-1356, 2015. https://doi.org/10.5194/gmd-8-1339-2015
  34. Morgenstern, O., Hegglin, M.I., Rozanov, E., O'Connor, F.M., Abraham, N.L., Akiyoshi, H., Archibald, A.T., Bekki, S., Butchart, N., Chipperfield, M.P., Zeng, G.: Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI), Geoscientific Model Development, 10, 639-671, 2017. https://doi.org/10.5194/gmd-10-639-2017
  35. Moustaoui, M., Teitelbaum, H., Valero, F.P.J.: Vertical displacements induced by quasi-stationary waves in the Southern Hemisphere stratosphere during spring, Monthly Weather Review, 131 (10), 2279-2289, 2003. https://doi.org/10.1175/1520-0493(2003)131<2279:VDIBQW>2.0.CO;2
  36. NASA Global Modeling and Assimilation Office, MERRA-2 inst3_3d_asm_Nv: 3d,3-Hourly, Instantaneous, Model-Level, Assimilation, Assimilated Meteorological Fields V5.12.4., 2015a.
  37. NASA Global Modeling and Assimilation Office, MERRA-2 instM_3d_asm_Np: 3d, Monthly mean, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4. 2015b.
  38. NASA Global Modeling and Assimilation Office, MERRA-2 tavgM_3d_odt_Np: 3d, Monthly mean, Time-Avera ged, Pressure-Level, Assimilation, Ozone Tendencies V5.12.4. 2015c.
  39. NASA Global Modeling and Assimilation Office, MERRA-2 tavgM_3d_trb_Np: 3d, Monthly mean, Time-Avera ged, Pressure-Level, Assimilation, Turbulence Diagnostics V5.12.4. 2015d.
  40. Poole, L.R., McCormick, M.P.: Polar stratospheric clouds and the Antarctic ozone hole, Journal of Geophysical Research, 93 (D7), 8423-8430, 1988. https://doi.org/10.1029/JD093iD07p08423
  41. Punge, H.J., Giorgetta, M.A.: Differences between the QBO in the first and in the second half of the ERA-40 reanalysis, Atmospheric Chemistry and Physics, 7, 599-608, 2007. https://doi.org/10.1007/978-0-387-69002-5_36
  42. Rae, C.D., Keeble, R.J., Hitchcock, P., Pyle, J.A.: Prescribing zonally asymmetric ozone climatologies in climate models: performance compared to a chemistry-climate model, Journal of Advances in Modeling Earth Systems, 11 (4), 918-933, 2019. https://doi.org/10.1029/2018MS001478
  43. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.-K., Woollen, J.: MERRA: NASA's modern-era retrospective analysis for research and applications, Journal of Climate, 24 (14), 3624-3648, 2011. https://doi.org/10.1175/JCLI-D-11-00015.1
  44. Schanz, A., Hocke, K., Kämpfer, N.: Daily ozone cycle in the stratosphere: global, regional and seasonal behaviour modelled with the whole atmosphere community climate model, Atmospheric Chemistry and Physics, 14 (14), 7645-7663, https://doi.org/10.5194/acp-14-7645-2014, 2014.
  45. Shangguan, M., Wang, W., Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmospheric Chemistry and Physics, 19 (10), 6659-6679, 2019. https://doi.org/10.5194/acp-19-6659-2019
  46. Turner, J., Hosking, J.S., Bracegirdle, T.J., Phillips, T., Marshall, G.J.: Variability and trends in the Southern Hemisphere high latitude, quasi-stationary planetary waves, International Journal of Climatology, 37 (5), 2325-2336, 2017. https://doi.org/10.1002/joc.4848
  47. Varotsos, C., Tzanis, C.: A new tool for the study of the ozone hole dynamics over Antarctica, Atmospheric Environment, 47, 428-434, 2012. https://doi.org/10.1016/j.atmosenv.2011.10.038
  48. Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., Partyka, G.: Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis, Journal of Climate, American Meteorological Society, 30 (8), 2961-2988, 2017. https://doi.org/10.1175/JCLI-D-16-0699.1
  49. Waugh, D.W., Oman, L., Newman, P.A., Stolarski, R.S., Pawson, S., Nielsen, J.E., Perlwitz, J.: Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends, Geophysical Research Letters, 36 (18), 2009. https://doi.org/10.1029/2009GL040419
  50. Waugh, D.W., Sobel, A.H., Polvani, L.M.: What is the polar vortex and how does it influence weather? Bulletin of the American Meteorological Society, 98, 37-44, 2017. https://doi.org/10.1175/BAMS-D-15-00212.1
  51. WMO. Executive Summary: Scientific Assessment of Ozone Depletion: 2018. Technical Report Report No. 58, 67 pp., Global Ozone Research and Monitoring Project, Geneva, Switzerland, 2018.
  52. Zhang, Y., Li, J., Zhou, L.: The Relationship between Polar Vortex and Ozone Depletion in the Antarctic Stratosphere during the Period 1979-2016, Advances in Meteorology, 2017, 1-12, 2017. https://doi.org/10.1155/2017/3078079