No 1 (2020): Ukrainian Antarctic Journal
Articles

Assessment of Colobanthus quitensis genetic polymorphism from the Argentine Islands region (maritime Antarctic) by actin, α- and γ-tubulin genes intron analysis

A. Rabokon
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine
A. Postovoitovа
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine
Yu. Bilonozhko
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine
L. Kalafat
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine
M. Pavlovska
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; National University of Life and Environmental Sciences of Ukraine, Kyiv, 03041, Ukraine
Ie. Prekrasna
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
I. Parnikoza
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
I. Kozeretska
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Ya. Pirko
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine
Ya. Blume
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine
Published July 7, 2020
Keywords
  • Colobanthus quitensis,
  • molecular genetic markers,
  • intron length polymorphism,
  • actin,
  • α-tubulin,
  • γ-tubulin
  • ...More
    Less

Abstract

Considering the continuing increase of morbidity and mortality rates associated with cardiovascular diseases, the search for novel compounds able to affect the hemostasis system is among the current trends of modern science and pharmacology. Fibrino(geno)lytic enzymes because of their role in dissolving blood clots as well as prevention of their formation attract special attention. The main goal of the current research was to develop the methodological approaches to obtain fibrino(geno)lytic enzymes from Antarctic hydrobionts and study their effects on the functioning of the hemostasis system. A complex approach which included affinity chromatography and size-exclusion chromatography was applied to isolate the fibrino(geno)lytic enzymes from the tissue of Antarctic nemertea (Parborlasia corrugatus), Antarctic sea urchin (Sterechinus neumayeri), and Antarctic sea star (Odontaster validus). The presence of proteolytic activity was monitored by zymographic technique. Fibrin(ogen)olytic activity was assessed by incubation of the samples with fibrinogen followed by 10% SDS-PAGE analysis. To test the substrate specificity of the enzymes, the chromogenic substrates such as H-D-Phe-Pip-Arg-pNA, pyroGlu-Pro-Arg-pNA, H-D-Val-Leu-Lys-pNA and Bz-IIe-Glu(γ-OR)-Gly-Arg-pNA were used. The influence of fib rino(geno)lytic enzymes on platelet aggregation was assessed in platelet-rich plasma. To analyze the effect of the fibrino(geno)lytic enzymes on coagulation the blood coagulation time was assessed. The obtained results clearly indicated the presence of enzymes with activity toward fibrinogen in the tissues of tested hydrobionts. Based on the results of SDS-PAGE and zymography the molecular weight of the fibrino(geno)lytic enzymes was in the range of 26–34 kDa. The fibrinogen cleavage pattern analyzed by SDS-PAGE revealed the susceptibility of fibrinogen chains to degradation by enzymes from tissues of Antarctic hydrobionts. The fibrino(geno)lytic enzymes from all tested hydrobionts cleaved preferentially the Aα-chain and more slowly the Bβ-chain of fibrinogen. The fibrino(geno)lytic enzymes mediated the significant prolongation of blood clotting time in chronometric tests and inhibition of ADP-induced platelet aggregation. The enzymes exhibit activity against chromogenic substrates, which was more expressed in case of pyroGlu-Pro-Arg-pNA — a specific synthetic substrate for activated protein C and factor XIa. The enzymes isolated from the tissues of Antarctic marine hydrobionts possess a fibrin(ogen)olytic activity and can be of medical interest as therapeutic agents in the treatment and prevention of thrombotic disorders.

References

  1. Acuña-Rodríguez, I.S., Oses, R., Cortés-Vasquez, J., Torres-Díaz, C., Molina-Montenegro, M.A.: Genetic diversity of Colobanthus quitensis across the Drake Passage, Plant Genetic Resources, 12 (1), 147-150, 2014. https://doi.org/10.1017/S1479262113000270
  2. Badoni, S., Das, S., Sayal, Y.K., Gopalakrishnan, S., Singh, A.K., Rao, A.R., Agarwal, P., Parida, S.K., Tyagi, A.K.: Genome wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice, Scientific Reports, 6, 23765, https://doi.org/10.1038/srep23765, 2016.
  3. Biersma, E.M., Torres-Díaz, C., Molina-Montenegro, M.A., Newsham, K.K., Vidal,M.A., Collado, G.A., Acuña-Rodríguez, A.S., Ballesteros, G.I., Figueroa, C.C., Goodall-Copestake W.P., Convey, P.: Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora, Journal of Biogeography, 00, 1-11, 2020. https://doi.org/10.1111/jbi.13843
  4. Braglia, L.B., Manca, A.M., Mastromauro, F.M., Breviario, D.: cTBP: A successful intron length polymorphism (ILP)-based genotyping method targeted to well defined experimental needs, Diversity, 2 (4), 572-585, 2010. https://doi.org/10.3390/d2040572
  5. Braglia, L., Gavazzi, F., Giovannini, A., Nicoletti, F., De Benedetti, L., Breviario, D.: TBP-assisted species and hybrid identification in the genus Passiflora, Molecular Breeding, 33 (1), 209-219, 2014. https://doi.org/10.1007/s11032-013-9945-6
  6. Bravo, L.A., Griffith, M.: Characterisation of antifreeze activity in Antarctic plants, Journal of Experimental Botany, 56 (414), 1189-1196, 2005. https://doi.org/10.1093/jxb/eri112
  7. Breviario, D., Baird, W.V., Sangoi, S., Hilu, K., Blumetti, P., Giani, S.: High polymorphism and resolution in targeted finger printing with combined β-tubulin introns, Molecular Breeding, 20, 249-259, 2007. https://doi.org/10.1007/s11032-007-9087-9
  8. Cuba-Díaz, M., Cerda, G., Rivera, C., Gómez, A.: Genome size comparison in Colobanthus quitensis populations show differences in species ploidy, Polar Biology, 40, 1475-1480, 2017. https://doi.org/10.1007/s00300-016-2058-z
  9. Galasso, I., Manca, A., Braglia, L., Ponzoni, E., Breviario, D.: Genomic fingerprinting of Camelina species using cTBP as molecular marker, American Journal of Plant Sciences, 6 (8), 1184-1200, 2015. https://doi.org/10.4236/ajps.2015.68122
  10. Gianoli, E., Inostroza, P., Zúñiga-Feest, A., Reyes-Diaz, M., Cavieres, L.A., Bravo, L.A., Corcuera, L.J.: Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of Central Chile and the Maritime Antarctic, Arctic, Antarctic, and Alpine Research, 36 (4), 484-489, 2004. https://doi.org/10.1657/1523-0430(2004)036[0484:EDIMAC]2.0.CO;2
  11. Giełwanowska, I., Pastorczyk, M., Kellmann-Sopyła, W., Górniak, D., Górecki, R.J.: Morphological and ultrastructural changes of organelles in leaf mesophyll cells of the Arctic and Antarctic plants of Poaceae family under cold influence, Arctic, Antarctic, and Alpine Research, 47 (1), 17-25, 2015. https://doi.org/10.1657/AAAR0014-019
  12. He, C., Liu, H., Su, S., Lu, Y., Luo, B., Nie, Z., Wu, L., Liu, D., Zhang, X., ... Gao, S.: Genome wide identification of candidate phosphate starvation responsive genes and the development of intron length polymorphism markers in maize, Plant Breeding, 134 (1), 11-16, 2015. https://doi.org/10.1111/pbr.12230
  13. Kang, Y., Lee, H., Kim, M.K., Shin, S.C., Park, H., Lee, J.: The complete chloroplast genome of Antarctic pearlwort, Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae), Mitochondrial DNA Part A, 27 (6), 4677-4678, 2016. https://doi.org/10.3109/19401736.2015.1106498
  14. Koc, J., Androsiuk, P., Chwedorzewska, K.J., Cuba-Díaz, M., Górecki, R., Giełwanowska, I.: Range-wide pattern of genetic variation in Colobanthus quitensis, Polar Biology, 41, 2467-2479, 2018. https://doi.org/10.1007/s00300-018-2383-5
  15. Kravets, O.A., Taran, N.Yu., Storozhenko, V.O.: Plasticity of morphogenesis and features of reproduction of Colobanthus quitensis and Deschampsia antarctica plants in Antarctic region, Ukrainian Antarctic Journal, 10-11, 302-305, 2011-2012.
  16. Lee, D.W., Postle, R.L.: Isozyme variation in Colobanthus quitensis (Kunth) Bartl.: methods and preliminary analysis, British Antarctic Survey Bulletin, 41-42, 133-137, 1975.
  17. Muthamilarasan, M., Suresh, B.V., Pandey, G., Kumari, K., Parida, S.K., Prasad, M.: Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet, DNA Research, 21 (1), 41-52, 2014. https://doi.org/10.1093/dnares/dst039
  18. Parnikoza, I., Berezkina, A., Moiseyenko, Y., Malanchuk, V., Kunakh V.: Complex survey of the Argentine Islands and Galindez Island (maritime Antarctic) as a research area for studying the dynamics of terrestrial vegetation, Ukrainian Antarctic Journal, 1 (17), 73-101, 2018. https://doi.org/10.33275/1727-7485.1(17).2018.34
  19. Pirko, Ya.V., Buy, D.D., Postovoitova, A.S., Rabokon, A.M., Kalafat, L.O., Blume, Ya.B.: New ILP method based on γ-tubulin genes intron length polymorphism, Reports of the National Academy of Sciences of Ukraine, 12, 87-92, 2018a. https://doi.org/10.15407/dopovidi2018.12.087
  20. Pirko, N.N., Demkovych, A.Ye., Kalafat, L.O., Privalikhin, S.N., Rabokon, A.N., Pirko, Ya.V., Blume Ya.B.: Intron length polymorphism of β-tubulin genes in different representatives of Pinaceae Lindl. Family, Journal of Botany, VIII, 2 (13), 5-9, 2016.
  21. Pirko Ya.V., Postovoitova A.S., Rabokon, A.M., Kalafat, L.O., Privalikhin, S.M., Bilonozhko, Yu.O., Pirko, N.M., Blume Ya.B.: Study of intron length polymorphism of the α-tubulin genes as a method of analysis of the genetic differentiation in plants, Ukrainian Botanical Journal, 75 (6), 576-584, 2018b.
  22. Postovoitova, A.S., Yotka, O.Yu., Pirko, Ya.V., Blume, Ya.B.: Molecular genetic evaluation of Ukrainian flax cultivar homogeneity based on intron length polymorphism of actin genes and microsatellite loci, Cytology and Genetics, 52 (6), 448-460, 2018a. https://doi.org/10.3103/S0095452718060099
  23. Postovoitova, A.S., Pirko, Ya.V., Blume, Ya.B.: Polymorphism of actin gene introns as an instrument for genotyping of the representatives from Solanaceae family, Biological Systems: Theory and Innovation, 287, 71-79, 2018b (in Ukrainian). https://doi.org/10.31548/biologiya2018.287.071
  24. Rabokon, A., Demkovich, A, Sozinov, A., Kozub, N., Sozinov, I., Pirko, Y., Blume, Y.: Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis, Cell Biology International, 43 (9), 1031-1039, 2019a. https://doi.org/10.1002/cbin.10886
  25. Rabokon, A.M., Pirko, Y.V., Demkovych, A.Ye., Andreev, I.O., Parnikoza, I.Yu., Kozeretska, I.A., Yu, Z., Kunakh, V.A., Blume, Y.B.: Intron length polymorphism of β-tubulin genes in Deschampsia antarctica E. Desv. across the western coast of the Antarctic Peninsula, Polar Science, 19, 151-154, 2019b. https://doi.org/10.1016/j.polar.2018.11.001
  26. Radchuk, V.V.: The transcriptome of the tubulin gene family in plants, in:The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology, edited by: Blume Y.B., Baird W.V., Yemets A.I., Breviario D., Springer, Dordrecht, Netherlands, 219-241, 2008. https://doi.org/10.1007/978-1-4020-8843-8_11
  27. Torres-Díaz, C., Gallardo-Cerda, J., Lavin, P., Oses, R., Carrasco-Urra, F., Atala, C., Acuña-Rodríguez, I.S., Convey, P., Molina-Montenegro, M.A.: Biological interactions and simulated climate change modulates the ecophysiological performance of Colobanthus quitensis in the Antarctic ecosystem, PLOS One, 11 (10), e0164844, 2016. https://doi.org/10.1371/journal.pone.0164844
  28. Wang, X., Zhao, X., Zhu, J., Wu, W.: Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.), DNA Research, 12 (6), 417-427, 2005 https://doi.org/10.1093/dnares/dsi019