No 1 (2020): Ukrainian Antarctic Journal
Articles
Assessment of Colobanthus quitensis genetic polymorphism from the Argentine Islands region (maritime Antarctic) by actin, α- and γ-tubulin gene intron analysis
Published
July 7, 2020
Keywords
- Colobanthus quitensis,
- molecular genetic markers,
- intron length polymorphism,
- actin,
- α-tubulin
- γ-tubulin ...More
How to Cite
Rabokon, A., Postovoitovа A., Bilonozhko, Y., Kalafat, L., Pavlovska, M., Prekrasna, I., Parnikoza, I., Kozeretska, I., Pirko, Y., & Blume, Y. (2020). Assessment of Colobanthus quitensis genetic polymorphism from the Argentine Islands region (maritime Antarctic) by actin, α- and γ-tubulin gene intron analysis. Ukrainian Antarctic Journal, (1), 93-101. https://doi.org/10.33275/1727-7485.1.2020.382
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Colobanthus quitensis is one of the two angiosperm plant species commonly spread in the Antarctic. The species has been extensively analyzed at morphological, anatomical and physiological levels, but information regarding its genetic variability remains limited. The aim of the study was to identify molecular genetic differences between C. quitensis populations in one of the Antarctic localities, the Argentine Islands region by estimating the intron length polymorphism of actin, α- and γ-tubulin genes. Samples of C. quitensis from different Antarctic natural populations were collected during the season of the 24th and previous Ukrainian Antarctic expeditions. Total DNA was isolated using the QIAGEN DNeasy Plant Mini Kit. The polymerase chain reaction was carried out with our own degenerate primers. The resulting amplicons were separated and visualized using polyacrylamide gel electrophoresis followed by silver nitrate staining. Molecular genetic analysis of natural populations of C. quitensis was performed using three DNA-marker systems based on the detection of intron length polymorphism of actin, α- and γ-tubulin genes. A low level of genetic polymorphism of C. quitensis in the studied region by these types of markers was established. By assessing the intron length polymorphism of actin genes of the studied C. quitensis populations it was possible to establish that the populations of Skua Island had unique amplicons characteristic only for this location. This indicates the possibility of further use of the analysis of intron length polymorphism of actin genes for the study of the molecular genetic diversity of the Antarctic pearlwort. At the same time, the results of analysis of the intron length polymorphism of α- and γ-tubulin genes induce selection of more specific primers, taking into account the structure of the C. quitensis genome. C. quitensis in the study region has a low level of genetic variability in intron length polymorphism of actin, α- and γ-tubulin genes. Overall, the results indicate that DNA markers based on gene structure analysis of highly conserved cytoskeletal proteins, namely, actin, α- and γ-tubulin, as additional sources of information, can be used for molecular genetic analysis of C. quitensis populations in the Antarctic.References
- Acuña-Rodríguez, I.S., Oses, R., Cortés-Vasquez, J., Torres-Díaz, C., Molina-Montenegro, M.A.: Genetic diversity of Colobanthus quitensis across the Drake Passage, Plant Genetic Resources, 12 (1), 147-150, 2014. https://doi.org/10.1017/S1479262113000270
- Badoni, S., Das, S., Sayal, Y.K., Gopalakrishnan, S., Singh, A.K., Rao, A.R., Agarwal, P., Parida, S.K., Tyagi, A.K.: Genome wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice, Scientific Reports, 6, 23765, https://doi.org/10.1038/srep23765, 2016.
- Biersma, E.M., Torres-Díaz, C., Molina-Montenegro, M.A., Newsham, K.K., Vidal,M.A., Collado, G.A., Acuña-Rodríguez, A.S., Ballesteros, G.I., Figueroa, C.C., Goodall-Copestake W.P., Convey, P.: Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora, Journal of Biogeography, 00, 1-11, 2020. https://doi.org/10.1111/jbi.13843
- Braglia, L.B., Manca, A.M., Mastromauro, F.M., Breviario, D.: cTBP: A successful intron length polymorphism (ILP)-based genotyping method targeted to well defined experimental needs, Diversity, 2 (4), 572-585, 2010. https://doi.org/10.3390/d2040572
- Braglia, L., Gavazzi, F., Giovannini, A., Nicoletti, F., De Benedetti, L., Breviario, D.: TBP-assisted species and hybrid identification in the genus Passiflora, Molecular Breeding, 33 (1), 209-219, 2014. https://doi.org/10.1007/s11032-013-9945-6
- Bravo, L.A., Griffith, M.: Characterisation of antifreeze activity in Antarctic plants, Journal of Experimental Botany, 56 (414), 1189-1196, 2005. https://doi.org/10.1093/jxb/eri112
- Breviario, D., Baird, W.V., Sangoi, S., Hilu, K., Blumetti, P., Giani, S.: High polymorphism and resolution in targeted finger printing with combined β-tubulin introns, Molecular Breeding, 20, 249-259, 2007. https://doi.org/10.1007/s11032-007-9087-9
- Cuba-Díaz, M., Cerda, G., Rivera, C., Gómez, A.: Genome size comparison in Colobanthus quitensis populations show differences in species ploidy, Polar Biology, 40, 1475-1480, 2017. https://doi.org/10.1007/s00300-016-2058-z
- Galasso, I., Manca, A., Braglia, L., Ponzoni, E., Breviario, D.: Genomic fingerprinting of Camelina species using cTBP as molecular marker, American Journal of Plant Sciences, 6 (8), 1184-1200, 2015. https://doi.org/10.4236/ajps.2015.68122
- Gianoli, E., Inostroza, P., Zúñiga-Feest, A., Reyes-Diaz, M., Cavieres, L.A., Bravo, L.A., Corcuera, L.J.: Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of Central Chile and the Maritime Antarctic, Arctic, Antarctic, and Alpine Research, 36 (4), 484-489, 2004. https://doi.org/10.1657/1523-0430(2004)036[0484:EDIMAC]2.0.CO;2
- Giełwanowska, I., Pastorczyk, M., Kellmann-Sopyła, W., Górniak, D., Górecki, R.J.: Morphological and ultrastructural changes of organelles in leaf mesophyll cells of the Arctic and Antarctic plants of Poaceae family under cold influence, Arctic, Antarctic, and Alpine Research, 47 (1), 17-25, 2015. https://doi.org/10.1657/AAAR0014-019
- He, C., Liu, H., Su, S., Lu, Y., Luo, B., Nie, Z., Wu, L., Liu, D., Zhang, X., ... Gao, S.: Genome wide identification of candidate phosphate starvation responsive genes and the development of intron length polymorphism markers in maize, Plant Breeding, 134 (1), 11-16, 2015. https://doi.org/10.1111/pbr.12230
- Kang, Y., Lee, H., Kim, M.K., Shin, S.C., Park, H., Lee, J.: The complete chloroplast genome of Antarctic pearlwort, Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae), Mitochondrial DNA Part A, 27 (6), 4677-4678, 2016. https://doi.org/10.3109/19401736.2015.1106498
- Koc, J., Androsiuk, P., Chwedorzewska, K.J., Cuba-Díaz, M., Górecki, R., Giełwanowska, I.: Range-wide pattern of genetic variation in Colobanthus quitensis, Polar Biology, 41, 2467-2479, 2018. https://doi.org/10.1007/s00300-018-2383-5
- Kravets, O.A., Taran, N.Yu., Storozhenko, V.O.: Plasticity of morphogenesis and features of reproduction of Colobanthus quitensis and Deschampsia antarctica plants in Antarctic region, Ukrainian Antarctic Journal, 10-11, 302-305, 2011-2012.
- Lee, D.W., Postle, R.L.: Isozyme variation in Colobanthus quitensis (Kunth) Bartl.: methods and preliminary analysis, British Antarctic Survey Bulletin, 41-42, 133-137, 1975.
- Muthamilarasan, M., Suresh, B.V., Pandey, G., Kumari, K., Parida, S.K., Prasad, M.: Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet, DNA Research, 21 (1), 41-52, 2014. https://doi.org/10.1093/dnares/dst039
- Parnikoza, I., Berezkina, A., Moiseyenko, Y., Malanchuk, V., Kunakh V.: Complex survey of the Argentine Islands and Galindez Island (maritime Antarctic) as a research area for studying the dynamics of terrestrial vegetation, Ukrainian Antarctic Journal, 1 (17), 73-101, 2018. https://doi.org/10.33275/1727-7485.1(17).2018.34
- Pirko, Ya.V., Buy, D.D., Postovoitova, A.S., Rabokon, A.M., Kalafat, L.O., Blume, Ya.B.: New ILP method based on γ-tubulin genes intron length polymorphism, Reports of the National Academy of Sciences of Ukraine, 12, 87-92, 2018a. https://doi.org/10.15407/dopovidi2018.12.087
- Pirko, N.N., Demkovych, A.Ye., Kalafat, L.O., Privalikhin, S.N., Rabokon, A.N., Pirko, Ya.V., Blume Ya.B.: Intron length polymorphism of β-tubulin genes in different representatives of Pinaceae Lindl. Family, Journal of Botany, VIII, 2 (13), 5-9, 2016.
- Pirko Ya.V., Postovoitova A.S., Rabokon, A.M., Kalafat, L.O., Privalikhin, S.M., Bilonozhko, Yu.O., Pirko, N.M., Blume Ya.B.: Study of intron length polymorphism of the α-tubulin genes as a method of analysis of the genetic differentiation in plants, Ukrainian Botanical Journal, 75 (6), 576-584, 2018b.
- Postovoitova, A.S., Yotka, O.Yu., Pirko, Ya.V., Blume, Ya.B.: Molecular genetic evaluation of Ukrainian flax cultivar homogeneity based on intron length polymorphism of actin genes and microsatellite loci, Cytology and Genetics, 52 (6), 448-460, 2018a. https://doi.org/10.3103/S0095452718060099
- Postovoitova, A.S., Pirko, Ya.V., Blume, Ya.B.: Polymorphism of actin gene introns as an instrument for genotyping of the representatives from Solanaceae family, Biological Systems: Theory and Innovation, 287, 71-79, 2018b (in Ukrainian). https://doi.org/10.31548/biologiya2018.287.071
- Rabokon, A., Demkovich, A, Sozinov, A., Kozub, N., Sozinov, I., Pirko, Y., Blume, Y.: Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis, Cell Biology International, 43 (9), 1031-1039, 2019a. https://doi.org/10.1002/cbin.10886
- Rabokon, A.M., Pirko, Y.V., Demkovych, A.Ye., Andreev, I.O., Parnikoza, I.Yu., Kozeretska, I.A., Yu, Z., Kunakh, V.A., Blume, Y.B.: Intron length polymorphism of β-tubulin genes in Deschampsia antarctica E. Desv. across the western coast of the Antarctic Peninsula, Polar Science, 19, 151-154, 2019b. https://doi.org/10.1016/j.polar.2018.11.001
- Radchuk, V.V.: The transcriptome of the tubulin gene family in plants, in:The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology, edited by: Blume Y.B., Baird W.V., Yemets A.I., Breviario D., Springer, Dordrecht, Netherlands, 219-241, 2008. https://doi.org/10.1007/978-1-4020-8843-8_11
- Torres-Díaz, C., Gallardo-Cerda, J., Lavin, P., Oses, R., Carrasco-Urra, F., Atala, C., Acuña-Rodríguez, I.S., Convey, P., Molina-Montenegro, M.A.: Biological interactions and simulated climate change modulates the ecophysiological performance of Colobanthus quitensis in the Antarctic ecosystem, PLOS One, 11 (10), e0164844, 2016. https://doi.org/10.1371/journal.pone.0164844
- Wang, X., Zhao, X., Zhu, J., Wu, W.: Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.), DNA Research, 12 (6), 417-427, 2005 https://doi.org/10.1093/dnares/dsi019