Ukrainian Antarctic Journal

No 9 (2010): Ukrainian Antarctic Journal
Articles

Solar axions as an energy source and modulator of the Earth magnetic field

V. D. Rusov
Odessa National Polytechnic University, Odessa
E. P. Linnik
Odessa National Polytechnic University, Odessa
K. Kudela
Institute of Experimental Physics, SAS, Kosice
S. Cht. Mavrodiev
Institute for nuclear research and nuclear energy, BAS, Sofia
I. V. Sharph
Odessa National Polytechnic University, Odessa
T. N. Zelentsova
Odessa National Polytechnic University, Odessa
M. E. Beglaryan
Odessa National Polytechnic University, Odessa
V. P. Smolyar
Odessa National Polytechnic University, Odessa
K. K. Merkotan
Odessa National Polytechnic University, Odessa
Published December 15, 2010
Keywords
  • axion coupling to photon,
  • axion-nucleon coupling,
  • axion mass,
  • solar dynamogeodynamo connection,
  • Sun luminosity
How to Cite
Rusov, V. D., Linnik, E. P., Kudela, K., Mavrodiev, S. C., Sharph, I. V., Zelentsova, T. N., Beglaryan, M. E., Smolyar, V. P., & Merkotan, K. K. (2010). Solar axions as an energy source and modulator of the Earth magnetic field. Ukrainian Antarctic Journal, (9), 109-118. https://doi.org/10.33275/1727-7485.9.2010.398

Abstract

We show existence of strong negative correlation between the temporal variations of magnetic field toroidal component of the solar tachocline (the bottom of convective zone) and the Earth magnetic field (Y-component). The possibility that hypothetical solar axions, which can transform into photons in external electric or magnetic fields (the inverse Primakoff effect), can be the instrument by which the magnetic field of convective zone of the Sun modulates the magnetic field of the Earth is considered. We propose the axion mechanism of Sun luminosity and “solar dynamo geodynamo” connection, where an energy of solar axions emitted in M1 transition in 57Fe nuclei is modulated at first by the magnetic field of the solar tachocline zone (due to the inverse coherent Primakoff effect) and after that is resonance absorbed in the core of the Earth, thereby playing the role of an energy source and a modulator of the Earth magnetic field. Within the framework of this mechanism estimations of the strength of an axion coupling to a photon  (gay ~1.64∙10-9 GeV-1), the axion-nucleon coupling (gaNeff~10-5 ) and the axion mass (ma~30eV) have been obtained.

References

  1. Anderson, D.L. (1989). Theory of the Earth.
  2. Andriamonje, S., et al. (2007). CAST Collaboration. An improved limit on the axion-photon coupling from the CAST experiment. J. Cosmol. Astropart. Phys., 0702, 010. e-print ArXiv: hepex/0702006.
  3. Andriamonje, S., et al. (2009). CAST Collaboration. Search for 14.4 keV solar axions emitted in the M1-transition of 57Fe nuclei with CAST. arHiv: 0906.4488.
  4. Battesty, B., Beltran, B., Davoudiasl, H., et al. (2008). Axion Searches in the Past, at Present, and in the NEar Future. Lect. Notes Phys. 741, 199. e-print ArXiv: 0705.0615.
  5. Brax, P., & Zioutas, K. (2010). Solar Chameleons. e-print ArXiv: 1004.1846.
  6. Buffet, B.A., Huppert, H.E., Lister, J.R., et al. (1996). On the thermal evolution of the Earth's core. J. Geophys. Res., 101, 7989.
  7. Buffet, B.A. (2002). Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett., 29.
  8. Buffet, B.A. (2003). The Thermal State of Earth's Core. Science, 299, 1675.
  9. Data of the observatory Eskdalemuir (England). (2007). World Data Centre for Geomagnetic (Edinburgh). Worldwide Observatory Annual Means, http://www.geomag.bgs.ak.uk./gifs/annual_means.shtml
  10. Dikpati, M., de Toma, G., & Gilman, P.A. (2008). Polar flux, cross-equatorial flux, and dynamo-generated tachocline toroidal flux as predictors of solar cycles. The Astrophysics J., 675, 920.
  11. Engdahi, E.R., & Villsenor, A. (2002). In: W.H.K. Lee, H. Kanamori, P.C. Jennings, & C. Kisslinger (Eds.), International Earthquake and Engineering Seismology. Part A, Vol. 81A (International Geophysics). Academic Press. P. 665-690.
  12. Engel, J., Seckel, D., & Heyes, A.C. (1990). Emission and DEtectability of Hadronic Axions from SN 1987A. Phys. Rev. Lett., 65, 960.
  13. Glatzmaier, G.A., & Roberts, P.H. (1996). An inelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica, D97, 81.
  14. Gondolo, P., & Raffelt, G.G. (2009). Solar neutrino limit on axions and keV-mass bosons. Phys. Rev. D79, 107301.
  15. Guendelman, E.I., Shilon, I., Cantatore, G. et al. (2010). Photon Production from the Scattering of Axions out of a Solenjidal Magnetic Fields. e-print arHiv: 0906.2537.
  16. Le Mouel, J.-L., Madden, T.R., Ducruix, J., et al. (1981). Decade fluctuations in geomagnetic westward drift and the Earth rotation. Nature, 290, 763.
  17. Miygosha, T., Kageyama, A., & Sato, T. (2010). Zonal flow formation in the Earth's core. Nature, 463, 793.
  18. Pacific Decade-Oscillation (PDO) + Atlantic Multidecaded Oscillation (OMA). http:/www.appinsys.com/GlobalWarming/PDO_AMO.htm
  19. Pendry, J.B. (2000). Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966.
  20. Primakoff, H. (1951). Photo-Production of Neutral Mesons in Nuclear Electric Fields and Mean Life of Neutral Meson. Phys. Rev. 81, 899.
  21. Raffelt, G.G. (1986). Astrophysical axion bounds. arHiv:hep-ph/0611350.
  22. Raffelt, G.G., & Stodolsky, L. (1988). Mixing of the photon with low-mass particles. Phys. Rev. D37, 1237
  23. Raffelt, G.G. (1999). Particle Physics from Stars. Ann. Rev. Nucl. Part. Sci. 49, 163.
  24. Roberts, P.H., Jones, C.A., & Calderwood, A.R. (2002). In: A.M. Soward, C.A. Jones, & K. Zhang (Eds.), Earth's Core and Lower Mantle. Taylor and Francis, London.
  25. Rotman, W. (1962). Plasma simulations by artificial dielectrics and parallel-plate media. IRE Trans Ant. Prop. 10, 82.
  26. Schlattl, H., Weiss, A., & Raffelt, G.G. (1999). Helioseismological constraint on the solar axion emission. Astroparticle Physics, 10, 353.
  27. Sidorenkov N.S. (2009). The Interaction Between Earth's Rotation and Geophysical Processes. Wiley-VCH.
  28. Turner, M.S. (1988). Axions from SN 1987A. Phys. Rev. Lett., 60, 1797.
  29. Vinecky, V.L., & Finegold, M.I. (1980). Channeling of -quanta in periodical structure. Ukrainian Journal of Physics, 25, 1093
  30. Vinecky, V.L., & Finegold, M.I. (1981). Channeling of neutral particles in layered structures. Solid State Commun., 40,7.
  31. Ziolkowski, R.W. (2004). Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev., E70, 046608
  32. Zioutas, K., Tsagri, M., Semertzidis, Y., Papaevangelou, T., Dafni, T., & Anastassopoulos, V. (2009). Axion Searches with Helioscopes and astrophysical signatures for axion(-like) particles. arXiv: 0903.1807