Ukrainian Antarctic Journal

No 9 (2010): Ukrainian Antarctic Journal
Articles

Trends and prospects for developing of new industrial biotechnologies on the base of Antarctic extremophilic microorganisns

O. Tashyrev
Institute of microbiology and virology of NAS of Ukraine, Kyiv
V. Romanovskaya
Institute of microbiology and virology of NAS of Ukraine, Kyiv
T. Beregova
Taras Shevchenko Kyiv National University, Kyiv
N. Matvieieva
Institute of microbiology and virology of NAS of Ukraine, Kyiv
P. Rokitko
Institute of microbiology and virology of NAS of Ukraine, Kyiv
G. Tashyreva
National Antarctic Scientific Center, Kyiv
T. Falalyeyeva
Taras Shevchenko Kyiv National University, Kyiv
Published December 15, 2010
Keywords
  • extremophilic microorganisms,
  • Antarctic Region,
  • biotechnology,
  • melanin,
  • medications
How to Cite
Tashyrev, O., Romanovskaya, V., Beregova, T., Matvieieva, N., Rokitko, P., Tashyreva, G., & Falalyeyeva, T. (2010). Trends and prospects for developing of new industrial biotechnologies on the base of Antarctic extremophilic microorganisns. Ukrainian Antarctic Journal, (9), 158-186. https://doi.org/10.33275/1727-7485.9.2010.402

Abstract

The aim of this study is researching Antarctic extremophilic microorganisms, estimation of trends and prospects for developing new environment protection biotechnologies, using them as producers of biologically active substances and medications. Complex structure and function researches have shown that microbial communities of Antarctic Region possess a high adaptation degree which is possible to consider as a homeostasis, i.e. preservation of viability and ability to grow in a wide range of concentration of extreme factors, down to bactericidal. The collection of the Antarctic microorganisms, resistant to extreme factors is developed. The collection includes cryoprotector-producing bacteria, microorganisms resistant to high UV radiation level (up to 500-1500 J/m2 ), isolates resistant to a wide spectrum of the most toxic metals (Hg2+,    Cu2+, Cr(VI), Co2+ , Cd2+ , Ni2+ ) in concentrations of 5х102 -6х104 mg/l, isolates that are producers of biologically active substances (melanins, carotins, antibiotics etc). Isolated extremophilic microorganisms are perspective for a wide spectrum of new biotechnologies designing. Biotechnologies based on microbial mobilisation of insoluble metal compounds are effective for increase of their extraction in the mining industry, and in bioremediation. Immobilization abilities can be applied in metal-containing sewage treatment. Antarctic microorganisms can be used for new antibiotics production, antibiotic-resistant strains as test-cultures for studying efficiency of new antimicrobial preparations. Methylotrophic bacteria are perspective cryoprotector producers, pigmented microorganisms - as biologically-active substances producers (melanins, carotins). The unique yeast isolate Exophiala nigra (a melanin producer) can simultaneously be used for sewage treatment (for example, Ni2+ and Co2+ ), UV-protective preparations, creation of medicines with preventive and curative properties in relation to ulcer-erosive lesions of the stomach and precancerous states of its.

References

  1. Bainbridge, B.W., Bull, A.T., Pirt, S.J. еt аl. (1971). Biochemical and structural changes in non-growing maintained and autolizing cultures of Aspergillus nidulans. Trans. Brit. Soc., 56, 371–385.
  2. Beregova, T.V., Ostapchenko, L.I., Tsyryuk, O.I. еt аl. (2009). Probiotic is preventive agent against structural and functional changes in stomach evoked by long-term reduction of gastric acid secretion. Gut, 58, Suppl. II. 124–125.
  3. Bowman, J.P, Sly, L.I., & Hayward, A.C. (1990). Patterns of tolerance to heavy metals among methane-utilizing bacteria. Lett. Appl. Microbiol., 10, 85–87.
  4. Brhynhildsen, L., Lundgren, B.V., Allard, B. еt аl. (1988). Effects of glucose concentrations on cadmium, copper, mercury, and zinc toxicity to a Klebsiella sp. Appl. Environ. Microbiol., 54, 1689–1693.
  5. Dighton, J., Tugay, T., & Zhdanova, N. (2008). Fungi and ionizing radiation from radionuclides. FEMS Microbiol. Lett., 281, 109–120.
  6. Gerhard, F. (ed.). (1981). Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC 200006.
  7. Ghosh, U.H., & Shild, H.O. (1958). Continious recording of acid secretion in the rat. British J. Pharm. Chemotherapy, 13, 54–61.
  8. Green, L., David, A., & Glosgowski, J. (1982). Аnalysis of nitrate, nitrite and [15N] nitrate in biological fluids. Annal. Biochem., 126, 131–138.
  9. Iutynska, G.O., & Tashyreva, G.O. (2008). Microbial communities of soil-like substrate of Antarctic island Galindez. Microbiologichny Zhyrnal, 70(5), 3–8.
  10. Kotsoflyak, O.I., Reva, O.N., & Tashyrev, O.B. (2004). Taxonomy and antagonistic properties of antarctic fluorescent bacteria of Pseudomonas genus. Mikrobiologichny Zhurnal, 66(2), 3–10
  11. Kumar, N.C, & Ramachandra, R.T.K. (1988). Effect of cadmium on microorganisms and microbe-mediated mineralization process in the soil. Bull. Environ. Contam. and Toxicol., 41, 657–663.
  12. Lindow, E. (1983). The role of bacterial ice nucleation in frost injury to plants. Ann. Rew. Phytopathol., 21, 363–384.
  13. Meynell, G., & Meynell, E. (1965). Theory and Practice in Experimental Bacteriology. Cambridge: At the University Press.
  14. Negoita, T.Gh., & Bahrim, G. (2007). Antarctic bacteria as good producers of industrial interest enzymes. CIENCIA/SANTAR07/CD/TAPA. HTM, CVRE408
  15. Negoita, T.Gh., Bahrim, G., Cotarlet, M. еt аl. (2008). Microbiological study of Grove Mountains soils, East Antarctica. SCAR/IASC/IPY Open Science Conference. St. Petersburg, 2008, S5.2/O02. P. 442.
  16. Romanovskaya, V.A., Sokolov, I.G., Malashenko, Y.R. еt аl. (1998). Mutability of epiphytic and soil bacteria of genus Methylobacterium and their resistance to UV and nuclear radiation. Mikrobiologiia, 67(1), 106–115
  17. Romanovskaya, V.A., Stoliar, S.M., Malashenko, Y.R. еt аl. (2001). Processes of plant colonization by Methylobacterium strains and some bacterial properties. Mikrobiologiia, 70(2), 263–269.
  18. Romanovskaya, V.A., Rokitko, P.V., Shylin, S.O., еt аl. (2004). Identification of Methylobacterium strains using sequence analysis of 16S rRNAgenes. Mikrobiologiia, 73(6), 846–848.
  19. Ruban, E.L., Layh, S.P., Hruleva, I.M. еt аl. (1969). Melanin pigments Nadsoniella nigra. Proceedings Acad. Sci. USSR, Ser. Biol., 1-3, 134–148.
  20. Tashyrev, O.B., Matvieieva, N.A., Romanovskaya, V.A., еt аl. (2007). Polyresistance and superresistance of Antarctic microorganisms to heavy metals, Reports of Nat. Acad. Sci. of Ukraine, 11, 170–175.
  21. Tashyrev, O.B., Romanovskaya, V.A., Sioma, I.B., еt аl. (2008). Antarctic microorganisms resistant to high concentration of Hg2+, Cu2+, Cd2+, and СrО2+. Reports of Nat. Acad. Sci. of Ukraine., 4–1, 169–176
  22. Tashyrev, O.B., Galinker, E.V., & Andreyuk, E.I. (2008). Thermodynamic forecasting of redox-interaction of microorganisms with metals-oxidizers (Hg2+, CrO2- and Cu2+). Reports of Nat. Acad. Sci. of Ukraine, 4, 166–172.
  23. Tashyrev, O.B., Matvieieva, N.A., Tashyreva, G.O. еt аl. (2008). Experimental substantiation of thermodynamic prognosis of redox-interaction microorganisms with metals-oxidizers (Hg2+, CrO42- and Cu2+). Reports of Nat. Acad. Sci. of Ukraine, 5, 174–180.
  24. Tashyrev, O.B. (2009). Complex researches of structure and function of Antarctic terrestrial microbial communities. Ukrainian Antarctic Journal, 8, 228–242.
  25. Тsyryuk, O., Radchuk, O., & Beregova, T. (2008). The influence of multiprobiotic "SYMBITER ® ACIDOPHILIC" on structurally functional state of gastric mucosa in omeprazole-treated rats. Annales Universitatis Mariae Curie-Sklodowska (Lublin-Polonia), 21, P.257–260.
  26. Zhdanova, N., Tugay, T., Dighton, J. et al. (2004). Ionizing radiation attracts soil fungi. Mycol. Res., 108, 1089–1096.