Ukrainian Antarctic Journal

No 9 (2010): Ukrainian Antarctic Journal

The peculiarities of structural state of mitochondrial membranes isolated from Antarctic fishes' hepatocytes

V.M. Voitsisky
Taras Shevchenko National University of Kyiv, Kyiv
S. V. Khyzhnyak
Taras Shevchenko National University of Kyiv, Kyiv
L. I. Stepanova
Taras Shevchenko National University of Kyiv, Kyiv
L. V. Sorokina
Taras Shevchenko National University of Kyiv, Kyiv
V. M. Trokhymets
Taras Shevchenko National University of Kyiv, Kyiv
Published December 15, 2010
  • fishes,
  • adaptation,
  • lipids,
  • mitochondria,
  • membranes
How to Cite
Voitsisky, V., Khyzhnyak, S. V., Stepanova, L. I., Sorokina, L. V., & Trokhymets, V. M. (2010). The peculiarities of structural state of mitochondrial membranes isolated from Antarctic fishes’ hepatocytes. Ukrainian Antarctic Journal, (9), 194-201.


The lipid contents, structural and dynamical state of inner mitochondrial membrane from hepatocytes of fishes Notothenia coriiceps, Parachaenichtys charcoti, Chaenocephalus aceratus and Trematomus newnesi taken during the work of the 13th Antarctic expedition were investigated. The differences in structural state of mitochondrial membrane from hepatocytes – the modifications in membrane superficial layer, in the structural order of lipid component, in conformational state of membrane protein molecules, in the content of cholesterol and phospholipids were observed. These modifications could cause the peculiarities of membrane functional activity. It was shown that the more expressed differences are characteristic for Trematomus newnesi. The detected features of structural state of mitochondrial membrane from hepatocytes of Antarctic fishes point out the possibility of existence of different mechanisms that facilitate the metabolic adaptation, particularly the adaptation of energetic processes in hepatocytes of Antarctic fishes at the influence of environmental low temperatures. 


  1. Detrich, H.W. (1991). Polymerization of microtubule proteins from Antarctic fish. Biology of Antarctic Fish. Berlin, Springer-Verlag. P. 248–262.
  2. Fields, P.A., & Somero, G.N. (1998). Hot-spots in cold adaptation: Localized increases in conformational flexibility in lactate degydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc. Natl. Acad. Sci. USA, 95, 243–282.
  3. Skulachev, V.P. (1989). Energetika biologicheskih membran [Energetics of biological membranes]. Moscow, Nauka. (In Russian)
  4. Harris, R.A. (1971). Studies on the fluorescence and binding of 8-anilino-1-naphthalene sulfonate by submitochondrial particles. Arch. Biochem. Bioph., 147, 436–445.
  5. Greenberg, C.S., & Craddock, P.R. (1982). Rapid single-step membrane protein assay. Clin. Chem., 28(7), 1725–1726.
  6. Folch, J., Leez, M., & Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol.Chem., 226(2), 497–501.
  7. Brockhuyse, R.M. (1968). Phospholipids in tissues of the eje. 1. Isolation characterization and quantitative analysis by dimensional thin-layer chromatography of diacyd and vinylether phospolipids. Biochim. Biophys. Acta, 152(2), 307–315.
  8. Allain, C.C., Poon, L.S., Chan, C.S., Richmond, W., & Fu, P.C. (1974). Method determination of cholesterol. Clin. Chem., 20, 470.
  9. Vladimirov, Yu.A., & Dobrietsov, G.E. (1980). Fluorestsentnyie zondy v issledovanii biologicheskih membran [Fluorescent probes in studying biological membranes]. Moscow, Nauka.
  10. Litvinov, I.S., & Obraztsov, V.V. (1982). Izucheniie viazkosti svobodnyh i sviazannyh s belkom lipidov v membranah [Studying the viscosity of the free and protein-bound lipids in membranes]. Biofizika, XXVII(1), 81-86. (In Russian)
  11. Dobrietsov, G.Ie. (1989). Fluorescentnyie zondy v issledovanii kletok, membran i lipoproteidov [Fluorescent probes in the study of cells, membranes and lipoproteids] Moscow, Nauka. (In Russian)
  12. Kucherenko, M.Ie., Babeniuk, Yu.D., & Voitsitskyi, V.M. (2001). Suchasni metody biohimichnyh doslidzhen [Modern methods of biochemical research]. Kyiv, Fitosociocenter. P. 109-152. (In Ukrainian)
  13. Klimov, A.N., & Nikulcheva, N.G. (1999). Obmen lipidov i lipoproteidov i ego narusheniia [Metabolism of lipids and lipoproteids and its disruptions]. S.-Petersburg, Piter kom. (In Russian)
  14. Shustanova, T.A., Miliutina, N.P., & Bondarenko, T.I. (2001). Vliianiie delta-son indutsiruiuschego peptida na strukturnoie sostoiania i poverhnostnyi zariad membran eritrotsitov krys v norme i pri holodovom stresse v opytah in vivo i in vitro [The effect of the delta-sleep-inducing peptide on the structural state and surface charge of erythrocyte membranes in healthy rats and rats after cold stress in vitro and in vivo]. Biologicheskiie membrany, 18(5), 375-381. (In Russian)
  15. Sidorov, V.S. (1983). Ekologicheskaia biohimiia ryb. Lipidy [Ecological biochemistry of fishes. Lipids]. Leningrad, Nauka. (In Russian)
  16. Mironova, N.G., Dreval, V.I., Sichevskaia, L.V., & Zagorodniaia, Ie.V. (2000). Strukturno-funktsionalnoie sostoianie mitohondrialnyh membran pecheni obluchennyh krys [Structural-functional state of mitochondrial membranes of irradiated rats' livers]. Radiatsionnaia biologiia. Radioekologiia, 40(2), 138-141. (In Russian)
  17. Demchenko, A.P. (1988). Liuministsentsia i dinamika struktury bielkov [Luminescence and dynamics of protein structure]. Kyiv, Naukova dumka. (In Russian)
  18. Fomenko, B.S., Dlimbetova, G.K., & Akoiev, I.G. (1985). Induktivno-rezonansnyi perenos energii miezhdu hromoforami, lokalizirovannymi v raznyh uchastkah obluchennyh i neobluchennyh tenei eritrocytov [Inductive-resonance energy transfer between chromophores situated in different areas of irradiated and non-irradiated shadows of erythrocytes]. Radiobiologiia, XXV(1), 12-15.