Ukrainian Antarctic Journal

No 8 (2009): Ukrainian Antarctic Journal
Articles

Response reaction of Deschampsia antarctica Desv. plants to UV-B irradiation and oxidative stress

N. Yu. Taran
Taras Shevchenko National University of Kyiv, Kyiv
A. A. Okanenko
Taras Shevchenko National University of Kyiv, Kyiv
L. M. Batsmanova
Taras Shevchenko National University of Kyiv, Kyiv
N. B. Svetlova
Taras Shevchenko National University of Kyiv, Kyiv
Published December 16, 2009
Keywords
  • Deschampsia,
  • glycolipids,
  • sulfolipid,
  • sulfoquinovosyldiacylglycerol,
  • SQDG
How to Cite
Taran, N. Y., Okanenko, A. A., Batsmanova, L. M., & Svetlova, N. B. (2009). Response reaction of Deschampsia antarctica Desv. plants to UV-B irradiation and oxidative stress. Ukrainian Antarctic Journal, (8), 395-403. https://doi.org/10.33275/1727-7485.8.2009.471

Abstract

The effect of stress factors – ultraviolet radiation (UV-B) and hydrogen peroxide (H2O2) upon two species of Deschampsia plants – D. antarctica and D. caespitosa were studied. Investigations performed with D. antarctica plant samples delivered of Antarctic and D. caespitosa from Carpathian Mountains showed that UV-B radiation caused changes mainly pigment composition - chlorophyll a and almost all (except violaxanthin) carotenoids. Lipid composition was characterized by accumulation of triacylglicerols, sulphoquinovosyl diacylglycerol and phopsphatydylcholine while monogalacto-syldiacylglycerol quantity decreased. H2O2 treatment cause increase chlorophyll a content in both species and carotenoids in D. antarctica plants. Concerning glycolipid composition one could see monogalactosyldiacylglycerol content decrease in D. caespitosa whereas only insignificant SQDG enlargement was noted in D. antarctica leaves.

References

  1. Arnon, D. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta Vulgaris. Plant Physiology, 24(1), 1–15.
  2. Barber, J., & Gounaris, K. (1986). What role does sulpholipid play within the thylakoid membrane? Photosynthesis Research, 9(1-2), 239–249.
  3. de Kruijff, B., Pilon, R., van't Hof, R., & Demel, R. (1998). Lipids in photosynthesis: structure, function and genetics. Advances in photosynthesis 6, Siegenthaler P.-A., Murata N. (Eds.), 1998, Kluwer Academic Publisher, the Netherlands. 191–208.
  4. De Vitry, C., Ouyang, Y., Finazzi, G. et al. (2004). The chloroplast Rieske iron-sulfur protein at the crossroad of electron transport and signal transduction. The Journal of Biological Chemistry, 279(43), 44621–44627.
  5. Edge, R., McGarvey, D.J., & Truscott, T.G. (1997). The carotenoids as antioxidants. Journal of Photochemistry and Photobiology. B: Biology, 41(3), 189-200.
  6. Foyer, C.H., Lelandais, M., & Kunert, K.J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92(4), 696–717.
  7. Gasser, A., Raddatz, S., Radunz, A., & Schmid, G.H. (1999). Comparative immunological and chemical analysis of lipids and carotenoids of the D1-peptide and of the light-harvesting-complex of photosystem II of Nicotiana tabacum. Z. Naturforsch. 54(3/4), 199–208.
  8. Hager, A. (1969). Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache derenzymatischenViolaxanthin-Zeaxanthin-Umwandlungen. Beziehungenzur Photophosphorylierung, Planta, 89(3), 224–243.
  9. Hager, A., & Holocher, K. (1994). Localisation of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of this mobility by a (light-dependent) pH decrease. Planta, 192(4), 581–589.
  10. Hideg, É., Barta, C., Kálai, T. et al. (2002). Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UVradiation. Plant and Cell Physiology, 43(10), 1154–1164.
  11. Hincha, D.K. (2003). Effects of calcium-induced aggregation on the physical stability of liposomes containing plant glycolipids. Biochimica et Biophysica Acta, 1611(1-2), 180–186.
  12. Joyard, J., Mareshal, E., Miege, C. et al. (1998). Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: P.A. Siegenthaler and N. Murata (Eds.). Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis, 6, 21–52. Kluwer Academic Publishing, Dordrecht.
  13. Kean, E.L. (1968). Rapid sensitive spectrophotometric method for quantitative determination of sulfatides. Journal of Lipid Research, 9(3), 314–327.
  14. Kenrick, J., & Bishop, D. (1986). The fatty acid composition of phosphatidylglycerol and sulfoquinovosyl diacylglycerol of higher plants in relation to chilling sensitivity. Plant Physiology, 81(4), 946-948.
  15. Kettunen, R., Tyystjarvi, E., & Aro, E.M. (1996). Degradation pattern of photosystem II reaction center protein D1 in intact leaves. The major photoinhibition-induced cleavage site in D1
  16. polypeptide is located amino terminally of the DE loop. Plant Physiology, 111(4), 1183–1190.
  17. Lee, A.G. (2000). Membrane lipids: it's only a phase. Current Biology, 109100, R377–R379.
  18. Lim, B.P., Nagao, A., Terao, J., Tanaka, K. et al. (1992). Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochimica et Biophysica Acta, 1126(2), 178–184.
  19. Livne, A., & Packer, E. (1969). Partial resolution of the enzymes catalyzing photophosphorylation. V. Interaction of coupling factor I from chloroplasts with ribonucleic acid and lipids. The Journal of Biological Chemistry, 244(5), 1332–1338.
  20. Madronich, S., McKenzie, R.L., Björn, L.O., & Caldwell, M.M. (1998). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology B: Biology, 46(1), 5–19.
  21. Menikh, A., & Fragata, M. (1993). Fourier transform infrared spectroscopic study of ion binding and intramolecular interactions in the polar head of digalactosyldiacylglycerol. European Biophysics Journal, 22(4), 249–258.
  22. Merzlyak, M.N. (1978). Densimetric determination of carotenoids in plants in thin layers of “Silufol” plates. Nauchnye doclady Vysshey shkoly. Biologicheskie nauki, 1, 134–138. (in Russian).
  23. Middleton, E.M., & Teramura, A.H. (1993). The Role of Flavonol Glycosides and Carotenoids in Protecting Soybean from Ultraviolet-B Damage. Plant Physiology, 103(3), 741–752.
  24. Murata, N., Siegenthaler, P.A. (1998). Lipids in photosynthesis: an overview. In: P.A. Siegenthaler, N. Murata (Eds.). Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis, 6, 3–20. Kluwer Academic Publishing, Dordrecht.
  25. Musil, C.F., Chimphango, S.B.M., & Dakora, F.D. (2002). Effects of elevated ultraviolet-B radiation on native and cultivated plants of Southern Africa. Annals of Botany, 90(1), 127–137.
  26. Noctor, G., & Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.
  27. Palozza, P., & Krinsky, N.L. (1992). Antioxidant effects of carotenoids in vivo and in vitro: an overview. Methods in Enzymology, 213, 403–420.
  28. Pérez-Torres, E., García, A., Dinamarca, J. et al. (2004). The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Functional Plant Biology, 31(7), 731–741.
  29. Pick, U., Gounaris, K., Weiss, M. et al. (1985). Tightly bound sulfolipids in chloroplast CF-CF. 01 Biochimica et Biophysica Acta, 808(3), 415–420.
  30. Rockholm, D.C., & Yamamoto, H.Y. (1996). Violaxanthin deepoxidase. Purification of a 43-Kilodalton Lumenal Protein from Lettuce by Lipid-Affinity Precipitation with Monogalactosyl-diacylglyceride. Plant Physiology, 110(2), 697–703.
  31. Sakaki, T. (1998). Responses of plant metabolism to air pollution and global change. L.J. de Kok & I. Stulen (Eds.), Backhuys Publishers, The Netherlands, 117–129.
  32. Sakaki, T., Ohnishi, J., Kondo, N. et al. (1985). Polar and neutral lipid changes in spinach leaves with ozone fumigation: triacylglycerol synthesis from polar lipids. Plant and Cell Physiology, 26(2), 253–262.
  33. Sakaki, T., Saitol, K., Kawaguchi, A., et al. (1990). Conversion of monogalactosyl-diacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiology, 94(2), 766–772.
  34. Sakaki, T., Tanaka, K., & Yamada, M. (1994). General metabolic changes in leaf lipids in response to ozone. Plant and Cell Physiology, 35(1), 53–62.
  35. Siefermann, D., & Yamamoto, H.Y. (1975). Light-induced deepoxidation of violaxanthin in lettuce chloroplasts. IV. The effects of electron-transport conditions on violaxanthin availability, Biochimica et Biophysica Acta, 387(1), 149–158.
  36. Sielewiesiuk, J., Matula, M., & Gruszecki, W.I. (1997). Photo-oxidation of chlorophyll a in digalactosyldiacyl-glycerol liposomes containing xanthophyll pigments: indication of a special photoprotective ability of zeaxanthin. Cellular and Molecular Biology Letters, 2, 59–68.
  37. Smith, J.L., Burritt, D.J., & Bannister, P. (2000). Shoot dry weight, chlorophyll and UV-B-absorbing compounds as indicators of a plant's sensitivity to UV-B radiation. Annals of Botany, 86(6), 1057-1063.
  38. Spotts, R.A., Lukezic, F.L., & Lacasse, L. (1975). The effect of benzimrdazole, cholesterol, and a steroid inhibitor on leaf sterols and ozone resistance of bean. Phytopathology, 65(1), 45–49.
  39. Steel, C.C., & Keller, M. (2000). Influence of UV-B irradiation on the carotenoid content of Vitis vinifera tissues. Biochemical Society Transactions, 28, part 6, 883–885.
  40. Taran, N.Y., Batsmanova, L.M., & Okanenko, A.A. (2007). Adaptive reactions of Deschampsia antarctica Desv. which grew in Antarctic conditions under oxidation stress action. Ukrainian Botanical Journal, 64(2), 279–289. (in Ukrainian).
  41. Tomlinson, H., & Rich. (1973). Anti-senescent compounds reduce injury and steroid changes in ozonated leaves and their chloroplasts. Phytopathology, 63(7), 903–906.
  42. Trevathan, L.E., Moore, L.D., & Orcutt, D.M. (1979). Symptom expression and free sterol and fatty acid composition of flue-cured tobacco plants exposed to ozone. Phytopathology, 69(6), 582–585.
  43. UNEP. (1998). Environmental effects of ozone depletion: 1998 Assessment: 1–209.
  44. Vijayan, P., Routaboul, J.-M., & Browse, J. (1998). Lipids in photosynthesis: structure, function and genetics. In P.A. Siegenthaler, N. Murata (Eds.), Advances in photosynthesis, 6. Kluwer Academic Publishing, the Netherlands. 263–285.
  45. Webb, M.S., & Green, B.R. (1991). Biochemical and biophysical properties of thylakoid acyl lipids. Biochimica et Biophysica Acta, 1060(2), 133–158.
  46. Whitaker, B.D., Lee, E.H., & Rowland, R.A. (1990). EDU and ozone protection: Foliar glycerolipids and steryl lipids in snapbean exposed to O. Physiologia Plantarum, 80(2), 286–293.
  47. Xiong, F.S., & Day, T.A. (2001). Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiology, 125(2), 738–751.
  48. Yakovenko, G.M., & Mihno, A.I. (1971). Method of isolation and separation lipids and chloroplasts by types. Fiziologia i Biochimia kulturnyx Rastenij, 3(6), 651-656. (in Russian).
  49. Yamamoto, H. (1980). High speed quantitative assey on TLC (HPTLC) plates. In W. Bertch, R. Raser (Eds.), Instrumental HPTLC. New York, 6, 367–384.
  50. Yamamoto, H.Y., & Higashi, R.M. (1978). Violaxanthin deepoxidase. Lipid composition and substrate specificity, Archives of Biochemistry and Biophysics, 190(2), 514–522.
  51. Zill, L., & Harmon, E. (1962). Lipids of photosynthetic tissue. I. Salicilic acid chromatography of the lipids from whole leaves and chloroplasts. Biochimica et Biophysica Acta, 57, 573–575.