Ukrainian Antarctic Journal

No 6-7 (2008): Ukrainian Antarctic Journal
Articles

Some aspects of the nonlinear interaction between global teleconnection patterns

A. V. Glushkov
Odessa State Ecological University, Odessa
N. S. Loboda
Odessa State Ecological University, Odessa
V. N. Khokhlov
Odessa State Ecological University, Odessa
A. A. Svinarenko
Odessa State Ecological University, Odessa
N. G. Serbov
Odessa State Ecological University, Odessa
Yu. Bunyakova
Odessa State Ecological University, Odessa
Published December 15, 2008
Keywords
  • teleconnection patterns wavelet expansion,
  • cross-redundancy,
  • Granger causality
How to Cite
Glushkov, A. V., Loboda, N. S., Khokhlov, V. N., Svinarenko, A. A., Serbov, N. G., & Bunyakova, Y. (2008). Some aspects of the nonlinear interaction between global teleconnection patterns. Ukrainian Antarctic Journal, (6-7), 157-166. https://doi.org/10.33275/1727-7485.6-7.2008.507

Abstract

The chaotic behavior in the global climate system of the Earth and the nonlinear interaction between some teleconnection patterns during different epochs of the twenty century are studied. To study the influence of low frequency variations, the wavelet decomposition is applied. We use the cross-redundancy and Granger causality for detailed components of the wavelet decomposition.

References

  1. Glushkov, A.V., Khokhlov, V.N., & Loboda, N.S. (2006). Quart. Journ. ofRoyal Meteorol. Soc., 132, 447-465.
  2. Khokhlov, V., Glushkov, A.V., & Tsenenko, I. (2004). nonlin. Proc. in Geophys., 11, 285-293.
  3. Loboda, N.S., Glushkov, A., Khokhlov, V., & Lovett, L. (2006). Journ. of Hydrology, 322, 1-4.
  4. Glushkov, A. V., Khokhlov, V.N., Bunyakova, Yu.Ya., Perepelitsa, G.P., Svinarenko, A.A., & Tsenenko, I.A. (2006). Sensor Electr. and Microsyst. Techn., 3(1), 21-34.
  5. Rusov, V.D., Glushkov, A.V., Khokhlov, V.N., Vaschenko, V.N., Pavlovich, V.N., Tsenenko, I.A., & Patalaschenko, Zh.O. (2004). Visnyk Kyivskoho un-tu. Ser. fiz-.mat., 4, 471-476.
  6. Lorenz, E.N. (1963). J. Atmos. Sci., 20, 130; (1970). J. Appl. Meteor., 9, 325-329.
  7. Ambaum, M.H.P., Hoskins, B.J., & Stephenson, D.B. (2001) J. Climate, 14, 3495.
  8. Ausloos, M., & Ivanova, K. (2001). Phys. Rev. E, 63, 047201.
  9. Cai, W., & Whetton, P.H. (2000). Geophys. Res. Lett., 27, 2577-2580.
  10. da Costa, E.D., & de Verdiere, A.C. (2002). Q.J.R. Meteorol. Soc., 128, 797-817.
  11. Dai, A., & Wigley, T.M.L. (2000). Geophys. Res. Lett., 27, 1283-1286.
  12. Daubechies, I. (1992). Ten lectures on wavelets. SIAM, Philadelphia.
  13. Deser, K. (2000). Geophys. Res. Lett., 27, 779-782.
  14. Diks, C., & Mudelsee, M. (2000). Phys. Lett. A., 275, 407-414.
  15. Duane, G.S., Webster, P.J., & Weiss, J.B. (1999). J. Atmos. Sci., 56, 4183-4205.
  16. Eckhardt, S., Stohl, A., Beirle, S. et al. (2003). Atmos. Chem. Phys., 3, 1769-1778.
  17. Fyfe J. C., Boer, G. J., & Flato, G. M. (1999). Geophys. Res. Lett., 26, 1601–1604.
  18. Gong, D., & Wang, S. (1999). Geophys. Res. Lett., 26, 1601–1604.
  19. Gouirand, I., & Moron, V. (2003). Int. J. Climatol., 23, 1549–1566.
  20. Granger, C.W.J. (1969). Econometrica, 37, 424–438.
  21. Grassberger, P., & Procaccia, I. (1983). Physica D, 9, 189–208.
  22. Hannachi, A.J. (2001). Climate, 14, 2138–2149.
  23. Hu, Q., Tawaye, Y., & Feng, S.J. (2004). Climate, 17, 1975–1986.
  24. Hurrell, J.W. (1995). Science, 269, 676–679.
  25. Kawamura, A., McKerchar, A.I., Spigel, R., Jinno, K. (1998). J. Hydrol., 204, 168.
  26. Klein, S.A., Soden, B.J., & Lau, N.–C. (1999). J. Climate, 12, 917–932.
  27. Li, Z.H. (2000). Geophys. Res. Lett., 27, 3505–3508.
  28. Lucero, O.A., & Rodríguez, N.C. (2000). Atmos. Res., 54, 87–104.
  29. Marshall, J., Kushnir, Y., Battisti, D. et al. (2001). Int. J. Climatol., 21, 1863–1898.
  30. Monahan, A.H., Fyfe, J.C., & Flato, G.M. (2000). Geophys. Res. Lett., 27, 1139–1142.
  31. Nason, G., von Sachs, R., & Kroisand, G.J. (2000). R. Stat. Soc. B, 62, 271–292.
  32. Oh, H.-S., Ammann, C., Naveau, P. (2003). J. Atmos. Solar-Terr. Physics, 65, 191–201.
  33. Paluš, M. (1995). Physica D, 80, 186–205 (1995); (1996). Phys. Lett. A, 213, 138–147.
  34. Prichard, D., & Theiler, J. (1995). Physica D, 84, 476–493.
  35. Saito, K., Yasunari, T., & Cohen, J. (2004). Int. J. Climatol., 24, 33–44.
  36. Sivakumar, B. (2001). Hydrol. Earth System Sci., 4, 407–417.
  37. Sutto, R.T., Norton, W.A., Jewson, S.P. (2001). Atmos. Sci. Lett., 1, 89–100.
  38. Thompson, D.W.J., & Wallace, J.M. (1998). Geophys. Res. Lett., 25, 1297–1300.
  39. Torrence, C., & Webster, P.J. (1999). J. Climate, 12, 2679–2690.
  40. Turner, J. (2004). Int. J. Climatol., 24, 1–31.
  41. Vallis, G.K., Gerber, E., Kushner, P.J., & Cash, B. (2004). J.Atmos. Sci., 61, 264–280.
  42. Voss, R., & Mikolajewicz, U. (2001). Clim. Dyn., 17, 45–60.
  43. Wang, C. (2004). ENSO, climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past, and Future (Eds H. F. Diaz and R. S. Bradley). Springer (2004).