Ukrainian Antarctic Journal

No 4-5 (2006): Ukrainian Antarctic Journal

Galactic cosmic rays-clouds effect and bifurcation model of Earth global climate

V. D. Rusov
National Polytechnic University, Odessa
A. V. Glushkov
Odessa State Environmental University, Odessa
V. Vaschenko
National Antarctic Center, Kyiv
T. Zelentsova
National Polytechnic University, Odessa
O. T. Mihalys
National Polytechnic University, Odessa
V. Khokhlov
Odessa State Environmental University, Odessa
A. Kolos
National Polytechnic University, Odessa
Zh. Patlashenko
National Antarctic Center, Kyiv
Published December 15, 2006
How to Cite
Rusov, V. D., Glushkov, A. V., Vaschenko, V., Zelentsova, T., Mihalys, O. T., Khokhlov, V., Kolos, A., & Patlashenko, Z. (2006). Galactic cosmic rays-clouds effect and bifurcation model of Earth global climate. Ukrainian Antarctic Journal, (4-5), 117-136.


The possible physical linkage between the cosmic rays - cloud and indirect aerosol effects is discussed using the analysis of the first indirect aerosol effect (Twomey effect) and its experimental representation as the dependence of mean cloud droplet effective radius versus aerosol index defining the column aerosol number.

It is shown that the main kinetic equation of Earth climate energy-balance model is described by the bifurcation equation (relative to the surface temperature of the Earth) in the form of fold catastrophe with two controlling parameters defining the variations of insolation and Earth magnetic field (or cosmic rays intensity in the atmosphere) respectively.

The results of comparative analysis on the time-dependent solution of Earth climate energy-balance model taking into account nontrivial role of galactic cosmic rays and the known experimental data on the paleotemperature from the Vostoc ice core are presented.

In the framework of the bifurcation model (i) the possibility of abrupt glacial climate changes analogous to the Dansgaard-Oeschger events due to stochastic resonance is theoretically argued, (ii) the concept of the climatic sensitivity of water (vapour and liquid) in the atmosphere is introduced. This concept reveals the property of temperature instability in the form of so-called hysteresis loop. On the basis of this concept it is shown that the simulated time series of global ice volume over the past 730 kyr are in good agreement with time series of seawater δ18O (ice volume proxy). (iii) Also, the so-called "doubling CO2" problem is discussed.



  1. Marsh, N.D., & Svenmark, H. (2000). Low Cloud Properties Influenced by Cosmic Rays. Phys. Rev. Lett., 15, 5004–5007.
  2. Stozhkov, Y.I. (2003). The role of cosmic rays in the atmospheric processes. J. of Physics G: Nuclear and Particle Physics, 29, 913–923.
  3. Shaviv, N.J. (2002). Cosmic Ray Diffusion from the Galactic Spiral Arms, Iron Meteorites and a Possible Climate Connection. Phys. Rev. Lett., 89, 051102; The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy, 8. (2003). 39–77.
  4. Lyon, J.G. (2000). The Solar Wind-Magnetosphere-Ionosphere System. Nature, 288, 1987–1991.
  5. Rind, D. (2002). The Sun’s Role in Climate Variations. Nature, 296, 673–677.
  6. Ney, E.R. (1959). Cosmic Radiation and Weather. Nature, 183, 451–452.
  7. Bazilevskaya, G.A. (2004). Solar cosmic rays in the near Earth space and the atmosphere. Advances in Space Research.
  8. Svensmark, H., & Friis-Christensen, E. (1997). J. Atmos. Sol.-Terr. Phys., 59, 1225–1232.
  9. Svensmark, H. (1998). Influence of Cosmic Rays on Earth’s Climate, Phys. Rev. Lett., 81, 5027–5030.
  10. Twomey, S. (1977). J. Atmos. Sci., V.34. P.1149.
  11. Kaufman, Y.J., & Fraser, R.S. (1997). The effect of Smoke Particles on Clouds and Climate Forcing. Science, 277, 1636.
  12. Breon, F.-M., Tanre, D., & Generoso, S. (2002). Aerosol Effects on Cloud Droplet Size Monitored from Satellite. Science, 295, 834–838.
  13. Kaufman, Y.J., Tanre, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419, 215–223.
  14. Carslow, K.S., Harrison, R.G., & Kirkby, J. (2002). Cosmic Rays, Clouds, and Climate. Science, 298, 1732–1737.
  15. Kulmala, M. (2003). How Particles Nucleate and Grow. Science, 302, 1000–1001.
  16. Kutzbach, J.E., & Bryson, R.A. (1974). Variance spectrum of Holocene climatic fluctuations in North Atlantic Sector. J. Atm. Sci., 31, 1959–1963.
  17. Yamasaki, T., & Oda, H. (2002). Orbital Influence on Earth’s Magnetic field: 100,000-Year Periodicity in Inclination. Science, 295, 2435–2438.
  18. Malkus, W.V.R. (1968). Precession of the Earth as the cause geomagnetism. Science, 160, 259–264.
  19. Consolini, G., & De Michelis, P. (2003). Stochastic resonance in Geomagnetic Polarity Reversals. Phys. Rev. Lett., 90, 058501-1.
  20. Twomey, S. (1977). In: Atmospheric Aerosols. Elsiever Science, New York,. P. 278–290.
  21. Rosenfeld, D. (2000). Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science, 287, 1793–1796.
  22. Petit, J.R., Jousel, J., Raynaud, D., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostoc ice core, Antarctica. Nature, 399, 429–436.
  23. Rosenfeld, D., Lahav, R., Khain, A., & Pinsky, M. (2002). The role of Sea Spray in Cleansing Air Pollution over Ocean via Cloud Processes. Science, 297, 1667–1670.
  24. Baker, M.B., & Charlson, R.J. (1990). Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142-145.
  25. Albrecht, B. (1989). Aerosol, Cloud Microphysics, and Fractional Cloudiness. Science, 245, 1227–1230.
  26. Kirkby, J., Mangini, A., & Muller, R.A. The glacial cycles and cosmic rays. arXiv: physics/0407005 v1.
  27. Gilmore, R. (1985). Catastrophe Theory for scientists and engineers. Wiley-Interscience Publication, John Wiley Sons, New York −Chichester −Brisbane −Toronto.
  28. Ghil, M. (1980). Energy-balance models: An introduction, in Climate Variations and Variability, Facts and Theories (D.Reidel, Dodrecht–Boston–London, 1980).
  29. Wigley, T.M.L. (2005). The Climate Change Commitment. Science, 307, 1766–1769.
  30. Berger, A. (1978). Long-term variation of daily insolation and Quaternary climatic change. J. Atmos. Sci., 35, 2362–2367.
  31. Clark, P.U., Alley, R.B., & Pollard, D. (1999). Northern Hemisphere Ice-Sheet Influences on Global Climate Change. Science, 286, 1104-1111.
  32. Berger, A., & Loutre, M.F. (2002). An Exceptionally Long Interglacial Ahead? Science, 297, 1287-1288.
  33. Vysotskii, V.I., Smirnov, I.V., & Kornilova, A.A. (2005). Introduction to the Biophysics of Activated Water, Universal Publishiers, Roca Raton, Florida.
  34. Wigley, T.M.L., & Raper, S.G.B. (1990). Natural variability of the climate system and detection of the greenhouse effects. Nature, 344, 324-327.
  35. Wunsch, C. (2002). What is the Thermohaline Circulation. Science, 298, 1179-1180.
  36. Bassinot, F.C., Labeyrie, L.D., Vincent, E. et al. (1994). The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126, 91-108.
  37. Tidemann, R., Sarnthein, M., & Shackleton, N.J. (1994). Astronomic timescale for the Pliocene Atlantic б18O and dust flux records of Ocean Drilling Program site 659, Paleoceanography, 9, 619-638.
  38. Moss, F. (1994). In: Some Problems in Statistical Physics (Philadelfia: SIAM, 1994). 205-253.
  39. Ganopolski, A., & Rahmstorf, S. (2002). Abrupt Glacial Climate Change due to Stochastic Resonance. Phys. Rev. Lett., 88, 038501-1.
  40. Anderson, K.K., Azuma, N., Barnola, J.-M. et al. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147-151.
  41. Gammatoni, L., Marchesoni, F., & Santucci, S. (1995). Stochastic Resonance as a Bona Fide Resonance. Phys. Rev. Lett., 74,1052-1055.