Ukrainian Antarctic Journal

No 4-5 (2006): Ukrainian Antarctic Journal
Articles

Geoantineutrino spectrum, 3He/4He-ratio distribution in the Earth’s interior and slow nuclear burning on the boundary of the liquid and solid phases of the Earth's core

V. D. Rusov
Odessa National Polytechnic University, Odessa, Bielefeld University, Bielefeld
V. N. Pavlovich
Institute for Nuclear Researches of NAS of Ukraine, Kyiv
V.N. Vaschenko
Ukrainian National Antarctic Center, Kyiv, Київський університет імені Тараса Шевченка, Київ
V. A. Tarasov
Odessa National Polytechnic University, Odessa
T.N. Zelentsova
Odessa National Polytechnic University, Odessa, Bielefeld University, Bielefeld
V. N. Bolshakov
Odessa National Polytechnic University, Odessa
D. A. Litvinov
Odessa National Polytechnic University, Odessa
S. I. Kosenko
Odessa National Polytechnic University, Odessa
O. A. Byegunova
Bielefeld University, Bielefeld
Published December 15, 2006
How to Cite
Rusov, V. D., Pavlovich, V. N., Vaschenko, V., Tarasov, V. A., Zelentsova, T., Bolshakov, V. N., Litvinov, D. A., Kosenko, S. I., & Byegunova, O. A. (2006). Geoantineutrino spectrum, 3He/4He-ratio distribution in the Earth’s interior and slow nuclear burning on the boundary of the liquid and solid phases of the Earth’s core. Ukrainian Antarctic Journal, (4-5), 182-202. https://doi.org/10.33275/1727-7485.4-5.2006.539

Abstract

The description problem of geoantineutrino spectrum and reactor antineutrino experimental spectrum in KamLAND, which takes place for antineutrino energy ~ 2.8 MeV, and also the experimental results of the interaction of uranium dioxide and carbide with iron-nickel and silica-alumina melts at high pressure (5-10 GPа) and temperature (1600-22000 C) have motivated us to consider the possible consequences of the assumption made by V.Anisichkin and coauthors that there is an actinid shell on boundary of liquid and solid phases of the Earth's core. We have shown that the activation of a natural nuclear reactor operating as the solitary waves of nuclear burning in 238U- and/or 232Th-medium (in particular, the neutron-fission progressive wave of Feoktistov and/or Teller-Ishikawa-Wood) can be such a physical consequence. The simplified model of the kinetics of accumulation and burnup in U-Pu fuel cycle of Feoktistov is developed. The results of the numerical simulation of neutron-fission wave in two-phase UO2/Fe medium on a surface of the Earth's solid core are presented. The georeactor model of 3He origin and the 3He/4He-ratio distribution in the Earth’s interior is offered. It is shown that the 3He/4He ratio distribution can be the natural quantitative criterion of georeactor thermal power. On the basis of O'Nions-Evensen-Hamilton geochemical model of mantle differentiation and the crust growth supplied by actinid shell on the boundary of liquid and solid phases of the Earth's core as a nuclear energy source (georeactor with power of 30 TW), the tentative estimation of geoantineutrino intensity and geoantineutrino spectrum on the Earth surface are given.

References

  1. Abagyan, L.P., Bazazyants, N.O., Bondarenko, I.I., & Nikolaev, M.N. (1964). Group Constants for Nuclear Reactor Calculations. Consultants Bureau, New York.
  2. Achmed, S.N., et. al. (2004). Measurement of the total active 8B solar neutrino flux at the Sudbury neutrino observatory with enhanced neutral current sensitivity, Phys. Rev. Lett., 92, 1813011–1813016.
  3. Adushkin, V.V., An, V.A., Ovtchinnikov, V.M., et al. (1997). On the density jump at the inner boundary of the Earth’s core from observations of PKiKP waives at distances of about 6o. Dokl. Russ. Acad. Sci./Earth Sci., 334, 595–598.
  4. Adushkin, V.V., & Ovtchinnikov, V.M. (2004). The mosaic in reflections from the Earth’s solid core boundary. Dokl. Russ. Acad. Sci./Earth Sci., A 397(6), 883–885.
  5. Aleksankin, V.G., et al. (1989). Beta-and Antineutrino Nuclear Radiations, 312 pp., Energoatomizdat, Moscow.
  6. Anderson, D.L. (1989). Theory of the Earth. Blackwell Scientific Publications, Boston.
  7. Anderson, D.L. (1998). The helium paradoxes, Proc. Nat. Acad. Sci., 95, 4822–4827.
  8. Anderson, D.L. (2000). The statistics and distribution of helium in the mantle, Int. Geology Rev., 42, 289–311.
  9. Anderson, D.L. (2005). Energetics of the Earth and the missing heat mystery, is available at www.mantleplumes.org/Energetics.html.
  10. Anisichkin, V.F. (1997). Do the planets explode? Burning and Explosion Phys. (Russia). 33, 138–144.
  11. Anisichkin, V.F., Bezborodov, A.A., & Suslov, I.P. (2005). Chain fission reactions of nuclides in the Earth’s core during billions years, Atomic Energy (Russia). 98(5), 370–379.
  12. Anisichkin, V.F., Ershov, A.P., Bezborodov, A.A., et al. (2003). The possible modes of chain nuclear reactions in the Earth’s core, paper presented at Int. Conf. “VII Zababakhin's Sientific Lectures”, Snezhinsk, Russia, 8–12 September. http://www.vniitf.ru/rig/konfer/7zst/7zst.html.
  13. Araki, T., et al. (2005a). Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94, 0818011–0818015.
  14. Araki, T. et al. (2005b). Experimental investigation of geologically produced antineutrinos with KamLAND, Nature, 436, 499–503.
  15. Avignone, F.T., & Greenwood, Z.D. (1980). Calculated spectra of antineutrinos from the fission products of 235U, 238U and 239Pu and antineutrino-induced reactions. Phys. Rev. C22, 594–605.
  16. Barger, V., Marfatia, D. & Whisnant, K. Progress in the physics of massive neutrinos, hep-ph/0308123.
  17. Bullen, K.E. (1978). The Earth’s density. Moscow, Mir.
  18. Driscoll, R.B. (1988). Nuclear disruption of a planet with convective outer core, Bull. Amer. Phys. Soc., Series II, 33, 1031–1037.
  19. Eguchi, K., Enomoto S., Furuno, K., et al. (2002). First results from KamLAND: Evidence for reactor anti-neutrino disappearance, hep-ex/0212021.
  20. Eguchi, K., Enomoto, S., Furuno, K., et al. (2003). First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett., 90, 041801–041805.
  21. England, T.R., & Rider, B.F. (1993). Evaluation and Compilation of Fission Product Yields. LA-UR-94-3106, ENDF-349.
  22. Ershov, A.P., & Anisichkin, V.F. (2003). About neutron-fissioning wave, Burning and Explosion Phys. (Russia). 39, 121–127.
  23. Fayans, S.A. (1985). Radioactive corrections and recoil effects in the reaction at low energies. Nucl. Phys. (USSR), 42, 929–940.
  24. Feoktistov, L.P. (1989). Neutron-fissioning wave. Reports of Acad. Sci. of USSR, 309, 864–867.
  25. Fiorentini, G., Lissia, M., Mantovani, F., & Vannucci, R. (2004). Geo-neutrinos: a short review, hep-ph/0409152.
  26. Fiorentini, G., Lissia, M., Mantovani, F., & Vannucci, R. (2005). How much uranium is in the Earth? Predictions for geo-neutrinos at KamLAND, hep-ph/0501111, v. 1.
  27. Fogli, G.L., Lisi, E., Marrone, A., et al. (2002). Solar neutrino oscillation parameters after first KamLAND results, hep-ph/0212127.
  28. Herndon, J.M. (1993). Feasibility of a nuclear fission reactor at the center of the Earth as the energy source for the geomagnetic field, Geomagnetism and Geoelectricity. 45, 423–437.
  29. Herndon, J.M. (2003). Nuclear georeactor origin of oceanic basalt 3H/4He, evidence, and implications. Proc. of Nat. Acad. Sci., 100, 3047–3050.
  30. Hofmeister, A.M., Criss, R.E. (2005). Earth’s heat flux revised and linked to chemistry. Tectonophysics, 395, 159−177.
  31. Hollenbach, D.F., & Herndon, J.M. (2001). Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field. Proc. of Nat. Acad. Sci., 98, 11085–11090.
  32. Julian, B.R., Davies, D., & Sheppard, R.M. (1972). PKJKP, Nature, 235, 317–318.
  33. KamLAND collaboration. (2005). Data release accompanying the 2nd KamLAND reactor result. http:/www.Awa.tohoku.ac.jp/KamLAND/datarelease/2ndresult.html.
  34. Kellogg, L.H., & Wassenburg, G.J. (1990). The role of plumes in mantle helium fluxes, Earth planet. Sci. Lett., 99, 276−289.
  35. Klapdor, H.V., & Metzinger, J. (1982). Antineutrino spectrum from the fission products of 239Pu, Phys. Rev. Lett., 48, 127-131.
  36. Kopeikin, V., Mikaelyan, L., & Sinev, V. (2003). Components of antineutrino emission in nuclear reactor, hep-ph/0308186.
  37. Kracnoshchekov, D.N., Kaazik, P.V., & Ovtchinnikov, V.M. (2005). Seismological evidence for mosaic structure of the surface on the Earth’s inner core. Nature, 435, 483–487.
  38. Kuroda, P.K. (1956). On the nuclear physical stability of the uranium minerals, J. Chem. Phys., 4, 781–782.
  39. Kuznetsov, V.V. (1997). Anisotropy of the Earth’s inner core properties, Usp. Fiz. Nauk (Russia), 167, 1001–1012.
  40. Lobkovsky, L.I., Nikishin, A.M., Khain, V.E. (2004). Current Problems of geotectonics and geodynamics. Scientific World, Moscow.
  41. Morgan, W.J. (1971). Convection plumes in the lower mantle, Nature, 230, 42−43.
  42. O’Nions, R.K., Evensen, N.M., & Hamilton, P.J. (1979). Geochemical modeling of mantle differentiation and crustal grouth. J. Geophys. Res., 84 (B11), 6091–6098.
  43. Particle Data Group. Phys. Rev. (2002). D66, 010001–406.
  44. Pollack, H.N., Hurter, S.J., Johnson, J.R. (1993). Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys., 31(3), 267–280.
  45. Rusov, V.D., Pavlovich, V.N., Vaschenko, V.N., et al. (2003). Antineutrino spectrum of theEarth and the problem of oscillating geoantineutrino deficit, hep-ph/0312296.
  46. Rusov, V.D., Pavlovich, V.N., Vaschenko, V.N., et al. (2004a). Geoantineutrino Spectrum and Slow Nuclear Burning on the Boundary of the Liquid and Solid Phases of the Earth's core, hep-ph/0402039.
  47. Rusov, V.D., Zelentsova, T.N., Tarasov, V.A., & Litvinov, D.А. (2004b). The inverse problem of distance neutrino diagnostic of inside-reactor processes. J. of Appl. Phys., 96, 1734–1739.
  48. Ryma, J.C., & Hermann, O.W. (1977). ORIGEN-S data libraries/NUREG/CR-0200 Rev. 6 Vol. 3 Sec.M6, ORNL/NUREG/CSD-2/V3/R6, USA –2000.
  49. Samarskiy, A.A. (1977). Difference scheme theory. Moscow, Nauka.
  50. Samarskiy, A.A., & Nikolaev, E.C. (1978). Net equation-solving procedure. Moscow, Nauka.
  51. Samarskiy, A.A., & Gulin, A.V. (2003). Numerical methods of mathematical physics. Moscow, Nauchniy mir.
  52. Smelov, V.V. (1978). Lectures of neutron transport theory. Moscow, Atomizdat.
  53. Stuart, F.M., Lass-Evans, S., Fitton, J.G., & Ellam R.M. (2003). 3He/4He in picritic basalts from Baffin Island: the role of a mixed reservoir in mantle plumes. Nature, 424, 57–59.
  54. Su, W.J., & Dziwonski, A.M. (1995). Inner core anisotropy in three dimensions. J. Geophys. Res., 100(B6), 9831–9852.
  55. Su, W.J., Woodward, R.L., & Dziwonski, A.M. (1994). Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res., 99(B4), 6945–6980.
  56. Teller, E., Ishikawa, M., Wood, L., et al. (1996). Completely automated nuclear reactor for long-term operation II. In Proc. Int. Conf. on Emerging Nuclear Energy System (ICENEC’96). Obninsk, Russian Federation, 123–127; also available from Lawrence Livermore National Laboratory, California, publication UCRL-JC-122708-RT2.
  57. Tromp, J. (1995). Normal-mode splitting observations from the great 1994 Bolivia and Kuril Islands earthquakes: constraints on the structure of the mantle and inner core. GSA Today, 5, 137–141.
  58. Tuli, J.K. (2001). Evaluated Nuclear Structure Data File. A manual for preparation of Data Sets/BNL-NCS-51655-01/02-Rev–2001.
  59. Van den Berg, A.P., Yuen, D. (2002). Delayed cooling of the Earth’s mantle due to variable thermal conductivity and the formation of a low conductivity zone. Earth Planet. Sci. Lett., 199, 403–413.
  60. Van den Berg, A.P., Yuen, D., & Steinbach, V. (2002b). The effects of variable thermal conductivity on mantle heat-transfer, Geophys. Res. Lett., 28(5), 875–878.
  61. Vogel, P. (1984). Analysis of the antineutrino capture on protons. Phys. Rev., D29, 1918–1930.
  62. Vogel, P., & Beacom, J. (1999). The angular distribution of the reaction +p →e++n, Phys. Rev. D60, 053003–053013.
  63. Vogel, P., Schenter, G.K., Mann, F.M. et al. (1981). Reactor antineutrino and their application to antineutrino-induced reactions II, Phys. Rev., C24, 1543–1553.
  64. Vorob'ev, A.A. et al. (1974). Triple fission of plutonium-239. Nucl. Phys. (USSR), 20, 461–468.