Ukrainian Antarctic Journal

No 3 (2005): Ukrainian Antarctic Journal
Articles

Single-Grain Trace Element Geochemistry of Zircon and Monazite Large Detrital Populations from Glacial and Alluvial Sediments of Ukraine (East-European Platform) and Antarctic Peninsula (Western Antarctica): Comparison and Possible Interpretation

S. P. Savenok
Taras Shevchenko National University of Kyiv, Kyiv
S. E. Shnyukov
Taras Shevchenko National University of Kyiv, Kyiv
A. V. Andreev
Taras Shevchenko National University of Kyiv, Kyiv
V. R. Morozenko
Taras Shevchenko National University of Kyiv, Kyiv
Published December 15, 2005
Keywords
  • trace element,
  • zircon,
  • monazite,
  • single-grain,
  • detrital population,
  • crustal evolution
  • ...More
    Less
How to Cite
Savenok, S. P., Shnyukov, S. E., Andreev, A. V., & Morozenko, V. R. (2005). Single-Grain Trace Element Geochemistry of Zircon and Monazite Large Detrital Populations from Glacial and Alluvial Sediments of Ukraine (East-European Platform) and Antarctic Peninsula (Western Antarctica): Comparison and Possible Interpretation. Ukrainian Antarctic Journal, (3), 57-66. https://doi.org/10.33275/1727-7485.3.2005.567

Abstract

The results of single-grain geochemical study of zircon (n = 2684) and monazite (n = 937) large detrital populations from glacial and alluvial sediments that reflect provenance within (1) the southern part of East-European Platform (EEP), including Ukrainian Shield, and (2) the subglacial area of Antarctic Peninsula (AP) in Western Antarctica are presented in the paper. Trace element (Hf, Y, Th, U, Pb etc.) content in both minerals was determined by means of special “single-grain” version of milliprobe Xray fluorescence analysis (XRF-MP/SG). “Total lead” method was used for zircon and monazite single-grain approximate age dating. Geochemical grouping of zircon grains as well as their parent rock types identification were realized on the basis of earlier suggested Hf-Y discriminant diagram. This new data set may be regarded as a representative contribution to present-day information about the crustal evolution within the both EEP and AP regions. For example a new unknown earlier stage of significant formation of monazite (~0.50.7 Ga) was discovered. Numerous data on zircon’s single-grain geochemistry were resulted in regional-scale models of progressive growth of the Earth’s crust. Taking into account that subglacial terranes of Antarctica are inaccessible for direct study, such approach is proposed for their investigation within the project “Circum Antarctic Zircon Census” (CAZIC) in the frame of IPY 2007/2008 program.

References

  1. Andrieiev, A.V. (1992). Sovremennye vozmozhnosti metoda obschego svinca v radiogehronologicheskih issledovaniah [Modern capabilities of the method of total lead method in radigeochronological research]. Geologogicheskiy zhurnal, 6, 125-130. (In Russian)
  2. Andrieiev, A.V., Shniukov, S.Ie., Savenok, S.P. et al. (1998). Rekonstrukcia oblastei pitania i kriterii stratigraficheskogo raschlenenia terrigennyh obrazovaniy tavricheskoi serii Kryma po dannym issledovania veschestvennogo sostava peschanikov. Statia 2: Rezultaty geohimicheskogo izuchenia terrigennyh cirkonov iz peschanikov tavricheskoi serii [Reconstruction of the nutrition areas and criteria for stratigraphic cleavage of terrigenic creations in the tauric series of the Crimea by the data of the sandstone composition. Article 2. Results of the geochemical study of terrigenic zircones from the sandstones of the tauric series]. Geophyzicheskiy zhurnal, 3-4, 66-74. (In Russian)
  3. Bakhmutov, V.G. (1998). Geologicheskiy obzor arhipelaga Argentinskie ostrova i prilegaiuschih territoriy Antarkticheskogo poluostrova [Geologic review of the Argentine Islands Archipelago and nearb territories of the Antarctic Peninsula]. Bulletin UAC, 2, 77-84. (In Russian)
  4. Geohronologicheskaia shkala dokembria Ukrainskogo schita [Geochronological scale of the pre-Cambrian of the Ukrainian schield]. (1989). E.V. Sobotovich (Ed.). (In Russian)
  5. Grikurov, G.E. (1973). Geologia Antarkticheskogo poluostrova [The geology of Antarctic Peninsula]. Moscow, Nauka. (In Russian)
  6. Lazareva, I.I., Shniukov, S.Ie., Andrieiev, O.V. et al. (2005). Geohimichne doslidzhennia akcesornyh mineraliv metasomatytiv iak zasib vstanovlennia yih henetychnoho zvyazku z mahmatychnymy kompleksamy (na prykladi rudonosnyh utvoren Suschano-Perzhanskoyi zony ta granitoidiv Korostenskoho plutonu [Geochemical study of accessory mineral of metasomatites as a method to establish their genetical connection with the magmatic complexes (on the examples of the ore-bearing complexes of the Suschansko-Perzhanska zone and granitoids of the Korostenskyi pluton]. Zb. nauk. prac UkrDHRI, 1, 137-144. (In Ukrainian)
  7. Ovchynnikov, L.N. (1990). Prikladnaia geohimia [Applied geochemistry]. Moscow, Nedra. (In Russian)
  8. Savenok, S.P. (2005). Ustanovka dlia doslidzhennia elementiv-domishok u monokrystalnyh obyektah maloi masy metodom renthenospektralnoho fluorescentnoho analizu [Equipment for studying trace elements in monocrystal objects of little mass by the method of X-ray fluorescent analysis]. Ekologia dovkillia ta bezpeka zhyttedialnosti, 1, 82-85. (In Ukrainian)
  9. Taylor, S.R., & McLennan, S.M. (1988). Kontinentalnaia kora: ieie sostav i evolucia (rassmotrenie geohimicheskoi letopisi, zapechatlennoi v osadochnyh porodah) [Continental crust: its composition and evolution (consideration of geochemical chronicle as captured in the sedimentory rocks]. Moscow, Mir. (In Russian)
  10. Cheburkin, A.K., Andrieiev, A.V., & Proskurka, K.S. (1984). Ustanovka dlia mnogoelementnogo rentgen-fluorescentnogo analiza malyh kolichestv veschestva [Equipment for multi-element X-ray fluorescent analysis of small amounts of substance]. Pribory i tehnika eksperimenta, 3, 208-212. (In Russian)
  11. Shniukov, S.E., Cheburkin, A.K., & Andrieiev, A.V. (1989). Geohimia "skvoznyh" sosuschestvuiuschih akcesornyh mineralov i ieie rol v issledovanii endo- i ekzogennyh geologicheskih processov [Geochemistry of "through-and-through" existing accessory minerals and its role in studying endo- and exogenous geologic processes]. Geol. zhurn., 49(2), 107-114. (In Russian)
  12. Shniukov, S.Ie., Cheburkin, A.K., & Andrieiev, A.V. (1991). Perspektivy, problemy i vozmozhnaia metodika terrigenno-mineralogicheskih issledovaniy s ispolzovaniem tipohimicheskih osobennostei "skvoznyh" terrigennyh mineralov [Perspectives, problems and possible methodics of terrigenic-mineralogic study using typochemical specifics of the "through-and-through" terrigenic minerals]. Geol. zhurn., 6, 100-115. (In Russian)
  13. Shniukov, S.Ie. (2000). Geohimia skvoznyh akcesornyh mineralov v terrigenno-mineralogicheskih i prognozno-poiskovyh issledovaniah [Geochemistry of "through-and-through" accessory minerals in terrigenic-mineralogic and prognostics-search study]. Geologicheskie problemy Chernoho moria. Kyiv, OMGOR NNPM NAN Ukrainy. P. 55-78. (In Russian)
  14. Shniukov, S.Ie. (2002). Geohimicheskie modeli evolucii magmaticheskih sistem i zemnoi kory: potencialnyi istochnik petrofizicheskoi i rudogeneticheskoi informacii [Geochemical models of the evolution of magmatic sistems and Earth crust: a potential source of petrophysical and ore-genetic information]. Geofiz. zhurn., 24(6), 201-219. (In Russian)
  15. Shniukov, S.Ie., Andrieiev, A.V., Belousova, Ie.A., & Savenok, S.P. (2002). Rentgeno-fluorescentnyi analiz mikrokolichestv veschestva v geohimii akcessornyh mineralov: issledovatelskie vozmozhnosti v sopostavlenii s lokalnymi analiticheskimi metodami [X-ray fluorescent analysis of microamounts of substances in geochemistry of the accessory materials: research possibilities in comparison with analytic methods]. Min. zhurn., 24(1), 80-95. (In Russian)
  16. Shniukov, S.Ie. (2003). Geohimicheskaia klassifikacia cirkonov i apatitov iz razlichnyh tipov gornyh porod i rud: sovremennoie sostoianie, primenenie i perspektivy razvitia [Geochemical classification of zircons and apatites from different types of rocks and ores: the current state, application and prospects of development]. Geol. zhurn., 1, 99-103. (In Russian)
  17. Shniukov, S.Ie. (2003). Geohimia elementiv-domishok v naibilsh rospovsiudzhenyh akcesornyh mineralah: Avtoref. dis. ...dokt. geol. nauk. [Geochemistry of trace elements in the most common accessory minerals: and autoreferat of doctoral thesis]. Kyiv. 35 P. (In Ukrainian)
  18. Shniukov, S.Ie., Andrieiev, O.V., Savenok, S.P., & Lazareva, I.I. (2005). Perspektyvni naukovo-doslidni ta prognozno-poshukovi tehnologii regionalnyh geohimichnyh doslidzhen [Perspectives of the research and prognostic-searching technologies for regional geochemical research]. Zb. nauk. prac UkrDHRI, 1, 130-136. (In Ukrainian)
  19. Scherbak, N.P., Zlobenko, I.G., & Zhukov, I.V. (1978). Katalog izotopnyh dat porod Ukrainskogo schita [The catalogue of isotopic dates of the Ukrainian shield rocks]. Kyiv, Naukova dumka. (In Russian)
  20. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., & Fisher, N.I. (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143, 602-622.
  21. McCulloch, M.T., & Bennet, V.C. (1994). Progressive growth of the Earth's continental crust and depleted mantle: Geochemical constraints. Geochim. et Cosmochim. Acta, 58(21), 4717-4738.
  22. Phosphates: Geochemical, Geobiological, and Materials Importance. (2002). Kohn, M.J., Rakovan, J., & Hughes, J.M. (Eds.). Reviews in Mineralogy & Geochemistry, 48.
  23. Savenok, S.P., Shnyukov, S.E., Andreev, A.V., Morozenko, V.R., & Omelchuk, O.D. (2004). Region-scale geological investigations of the subglacial terranes of Antarctica: main rock types identification and terrane-scale geological events determination on a basis of single-grain trace element geochemistry of zircon large detrital populations from glacial sediments (Antarctic Peninsula as an example). 2nd Ukrainian Antarctic Meeting (2UAM2004 June 22-23, 2004, Kyiv, Ukraine). Abstracts. Kyiv, 2004. P.35.
  24. Shnyukov, S.E., Andreev, A.V., & Savenok, S.P. (1997). Admixture elements in zircons and apatites: a tool for provenance studies of terrigenous sedimentary rocks. EUG 9, 23-27 March 1997, Strasbourg (France). Terra Nova. Vol. 9 (Abstract Supplement № 1). P. 597.
  25. Shnyukov, S.E., Andreev, A.V., & Savenok, S.P. (2002). Monitoring of the region-scale geological/metallogenic events on a basis of single-grain trace element geochemistry of zircon, monazite and apatite large detrital populations: Ukrainian Shield and some other regions as an example. International Symposium "Metallogeny of Precambrian Shields" (Kyiv, Ukraine, September 13-26, 2002). The Abstracts. Kyiv, 2002. P. 83-85.
  26. Suzuki, K., & Adachi, M. (1991). Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem. J., 25, 357-376.
  27. Zircon. (2003). Hanchar, J.M., & Hoskin, P.W.O. (Eds.), Reviews in Mineralogy & Geochemistry, 53.