Ukrainian Antarctic Journal

No 2 (2020): Ukrainian Antarctic Journal
Articles

Terrestrial ecosystems of the Antarctic Peninsula and their responses to climate change and anthropogenic impacts

R. Bargagli
University of Siena, Siena, 53100, Italy
Published December 29, 2020
Keywords
  • Antarctic Peninsula,
  • anthropogenic impacts,
  • climate change,
  • terrestrial ecosystems
How to Cite
Bargagli, R. (2020). Terrestrial ecosystems of the Antarctic Peninsula and their responses to climate change and anthropogenic impacts. Ukrainian Antarctic Journal, (2), 84-97. https://doi.org/10.33275/1727-7485.2.2020.656

Abstract

Antarctica and the Southern Ocean are unique natural laboratories where organisms adapted to extreme environmental conditions have evolved in isolation for millions of years. These unique biotic communities on Earth are facing complex climatic and environmental changes. Terrestrial ecosystems in the Antarctic Peninsula Region (APR) have experienced the highest rate of climate warming and, being the most impacted by human activities, are facing the greatest risk of detrimental changes. This review provides an overview of the most recent findings on how biotic communities in terrestrial ecosystems of the Antarctic Peninsula Region (APR) are responding and will likely respond to further environmental changes and direct anthropogenic impacts. Knowledge gained from studies on relatively simple terrestrial ecosystems could be very useful in predicting what may happen in much more complex ecosystems in regions with less extreme temperature changes. The rapid warming of the APR has led to the retreat of glaciers, the loss of snow and permafrost and the increase of ice-free areas, with a consequent enhancement of soil-forming processes, biotic communities, and food web complexity. However, most human activity is concentrated in APR coastal ice-free areas and poses many threats to terrestrial ecosystems such as environmental pollution or disturbances to soil communities and wildlife. People who work or visit APR may inadvertently introduce alien organisms and/or spread native species to spatially isolated ice-free areas. The number of introduced non-indigenous species and xenobiotic compounds in the APR is likely to be greater than currently documented, and several biosecurity and monitoring activities are therefore suggested to Antarctic national scientific programs and tourism operators to minimize the risk of irreversible loss of integrity by the unique terrestrial ecosystems of APR.

References

  1. Amesbury, M. J., Roland, T. P., Royles, J., Hodgson, D. A., Convey, P., Griffiths, H., & Charman, D. J. (2017). Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology, 27(11), 1616–1622. https://doi.org/10.1016/j.cub.2017.04.034
  2. Atkinson, A., Siegel, V., Pakhomov, E., & Rothery, P. (2004). Long-term decline in krill stocks and increase in salps within the Southern Ocean. Nature, 432, 100–103. https://doi.org/10.1038/nature02996
  3. Bargagli, R. (2005). Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact. Springer.
  4. Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400 (1–3), 212–226. https://doi.org/10.1016/j.scitotenv.2008.06.062
  5. Bargagli, R., Battisti, E., Focardi, S., & Formichi, P. (1993). Preliminary data on environmental distribution of mercury in northern Victoria Land, Antarctica. Antarctic Science, 5(1), 3–8. https://doi.org/10.1017/S0954102093000021
  6. Bargagli, R., Broady, P. A., & Walton, D. H. W. (1996). Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica). Antarctic Science, 8(2), 121–126. https://doi.org/10.1017/S0954102096000181
  7. Bargagli, R., Skotnicki, M. L, Marri, L., Pepi, M., Mackenzie, A., & Agnorelli, C. (2004). New record of moss and thermophilic bacteria species and physico-chemical properties of geothermal soils on the northwest slope of Mt. Melbourne (Antarctica). Polar Biology, 27(7), 423–431. https://doi.org/10.1007/s00300-004-0612-6
  8. Bargagli, R., Agnorelli, C., Borghini, F., & Monaci, F. (2005). Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environmental Science and Technology, 39(21), 8150–8155. https://doi.org/10.1021/es0507315
  9. Bergami, E., Rota, E., Caruso, T., Birarda, G., Vaccari, L., & Corsi, I. (2020). Plastic everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biology Letters, 16(6), Article 20200093, https://doi.org/10.1098/rsbl.2020.0093
  10. Bockheim, J. G. (1995). Permafrost distribution in the southern circumpolar region and its relation to the environment: A review and recommendations for further research. Permafrost and Periglacial Processes, 6(1), 27–45. https://doi.org/10.1002/ppp.3430060105
  11. Bockheim, J. G., & Ugolini, F.C. (1990). A review of pedogenic zonation in well-drained soils of the southern circumpolar region. Quaternary Research, 34(1), 47–66. https://doi.org/10.1016/0033-5894(90)90072-S
  12. Bockheim, J., Vieira, G., Ramos, M., López-Martinez, J., Serrano, E., Guglielmin, M., Wilhelm, K., & Nieuwendam, A. (2013). Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, 100, 215–223. https://doi.org/10.1016/j.gloplacha.2012.10.018
  13. Bokhorts, S., Convey, P., & Aerts, R. (2019). Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Current Biology, 29(10), 1721–1727. https://doi.org/10.1016/j.cub.2019.04.038
  14. Bölter, M., Blume, H.-P., Schneider, D., & Beyer, L. (1997). Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biology, 18, 295–304. https://doi.org/10.1007/s003000050191
  15. Brooks, S. T., Jabour, J., van den Hoff, J., & Bergstrom, D. M. (2019). Our footprint on Antarctica competes with nature for rare ice-free land. Nature Sustainability, 2, 185–190. https://doi.org/10.1038/s41893-019-0237-y
  16. Cabrerizo, A., Tejedo, P., Dachs, J., & Benayas, J. (2016). Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica). Science of the Total Environment, 569–570, 1500–1509. https://doi.org/10.1016/j.scitotenv.2016.06.240
  17. Cannone, N., Guglielmin, M., Convey, P., Worland, M. R., & Favero Longo, S. E. (2016). Vascular plant changes in extreme environments: effects of multiple drivers. Climatic Change, 134, 651–665. https://doi.org/10.1007/s10584-015-1551-7
  18. Cannone, N., Dalle Fratte, M., Convey, P., Worland, M. R., & Guglielmin, M. (2017). Ecology of moss banks on Signy Island (maritime Antarctic). Botanical Journal of the Linnean Society, 184(4), 518–533. https://doi.org/10.1093/botlinnean/box040
  19. Caruso, T., Hogg, I. D., Carapelli, A., Frati, F., & Bargagli, R. (2009). Large-scale spatial patterns in the distribution of Collembola (Hexapoda) species in Antarctic terrestrial ecosystems. Journal of Biogeography, 36(5), 879–886. https://doi.org/10.1111/j.1365-2699.2008.02058.x
  20. Caruso, T., Trokhymets, V., Bargagli, R., & Convey, P. (2013). Biotic interactions as a structuring force in soil communities: evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172, 495–503. https://doi.org/10.1007/s00442-012-2503-9
  21. Caruso, T., Hogg, I. D., Nielsen, U. N., Bottos, E. M., Lee, C. K., Hopkins, D. W., Cary, S. C., Barrett, J. E., Green, T. G. A., Storey, B. C., Wall, D. H., & Adams, B. J. (2019). Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals. Communications Biology, 2, Article 63. https://doi.org/10.1038/s42003-018-0260-y
  22. Chong, C.-W., Pearce, D. A., & Convey, P. (2015). Emerging spatial patterns in Antarctic prokaryotes. Frontiers in Microbiology, 6, Article 1058. https://doi.org/10.3389/fmicb.2015.01058
  23. Chown, S. L., & Convey, P. (2007). Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society B, Biological Sciences, 362, 2307–2331. https://doi.org/10.1098/rstb.2006.1949
  24. Chown, S. L., Huiskes, A. H. L., Gremmen, N. J. M., Lee, J. E., Terauds, A., Crosbie, K., Frenot, Y., Hughes, K. A., Imura, S., Kiefer, K., Lebouvier, M., Raymond, B., Tsujimoto, M., Ware, C., Van de Vijver, B., & Bergstrom, D. M. (2012). Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 109(13), 4938–4943. https://doi.org/10.1073/pnas.1119787109
  25. Chown, S. L., Clarke, A., Fraser, C. I., Cary, S. C., Moon, K. L., & McGeoch, M. A. (2015). The changing form of Antarctic biodiversity. Nature, 522, 431–438. https://doi.org/10.1038/nature14505
  26. Clucas, G. V., Dunn, M. J., Dyke, G., Emslie, S. D., Levy, H., Naveen, R., Polito, M. J., Pybus, O. G., Rogers, A. D., & Hart, T. (2014). A reversal of fortunes: climate change "winners" and "losers" in Antarctic Peninsula penguins. Scientific Reports, 4, Article 5024. https://doi.org/10.1038/srep05024
  27. Collins, G. E., Hogg, I. D., Convey, P., Sancho, L. G., Cowan, D. A., Lyons, W. B., Adams, B. J., Wall, D. H., & Green, T. G. A. (2020). Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 22293-22302. https://doi.org//10.1073/pnas.2007925117
  28. Convey, P., Gibson, J. A. E., Hillenbrand, C. D., Hodgson, D. A., Pugh, P. J. A., Smellie, J. L., & Stevens, M. I. (2008). Antarctic terrestrial life — challenging the history of the frozen continent? Biological Reviews of the Cambridge Philosophical Society, 83(2), 103–117. https://doi.org/10.1111/j.1469-185X.2008.00034.x
  29. Convey, P. (2013). Antarctic Ecosystems. In Encyclopedia of Biodiversity (2nd ed., pp. 179–188). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384719-5.00264-1
  30. Convey, P., & Peck, L. S. (2019). Antarctic environmental change and biological responses. Science Advances, 5(11), Article eaaz0888. https://doi.org/10.1126/sciadv.aaz0888
  31. Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A. & Vaughan, D. G. (2016). Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353(6296), 283–286. https://doi.org/10.1126/science.aae0017
  32. Cowan, D. A., Khan, N., Pointing, S. B., & Cary, S. C. (2010). Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22(6), 714–720. https://doi.org/10.1017/S0954102010000507
  33. Cowan, D. A., Chown, S. L., Convey, P., Tuffin, M., Hughes, K., Pointing, S., & Vincent, W. F. (2011). Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends in Microbiology, 19(11), 540–548. https://doi.org/10.1016/j.tim.2011.07.008
  34. da Silva, T. H., Silva, D. A. S., de Oliveira, F. S., Schaefer, C. E. G. R., Rosa, C. A., & Rosa, L. H. (2020). Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles, 24(4), 565–576. https://doi.org/10.1007/s00792-020-01176-y
  35. de Jesus, H. E., Peixoto, R. S., & Rosado, A. S. (2015). Bioremediation in Antarctic soils. Journal of Petroleum & Environmental Biotecnology, 6(6), Article 248. https://doi.org/10.4172/2157-7463.1000248
  36. Enriquez, N., Pertierra, L. R., Tejedo, P., Benayas, J., Greenslade, P., & Luciánez, M. J. (2019). The importance of longterm surveys on species introductions in Maritime Antarctica: first detection of Ceratophysella succinea (Collembola: Hypogastruridae). Polar Biology, 42(5), 1047–1051. https://doi.org/10.1007/s00300-019-02490-8
  37. Esteban, S., Moreno-Merino, L., Matellanes, R., Catalá, M., Gorga, M., Petrovic, M., López de Alda, M., Barceló, D., Silva, A., Durán, J. J., López-Martínez, J., & Valcárcel, Y. (2016). Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region. Environmental Research, 147, 179–192. https://doi.org/10.1016/j.envres.2016.01.034
  38. Fraser, W. R., Patterson-Fraser, D. L., Ribic, C. A., Schofied, O., & Ducklow, H. (2013). A nonmarine source of variability in Adelie penguin demography. Oceanography, 26(3): 207–209. https://doi.org/10.5670/oceanog.2013.64
  39. Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., & Bergstrom, D. M. (2005). Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80(1), 45–72. https://doi.org/10.1017/S1464793104006542
  40. Golledge, N. R., Everest, J. D., Bradwell, T., & Johnson, J. S. (2010). Lichenometry on Adelaide Island, Antarctic Peninsula: size-frequency studies, growth rates and snowpatches. Geografiska Annaler: Series A, Physical Geography, 92(1), 111–124. https://doi.org/10.1111/j.1468-0459.2010.00381.x
  41. Gonzáles-Alonso, S., Moreno-Merino, L., Esteban, S., López de Alda, M., Barceló, D., Durán, J. J., López-Martínez, J., Aceña, J., Pérez, S., Mastroianni, N., Silva, A., Catalá, M., & Valcárcel, Y. (2017). Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environmental Pollution, 229, 241–254. https://doi.org/10.1016/j.envpol.2017.05.060
  42. Gray, A., Krolikowski, M., Fretwell, P., Convey, P., Peck, L. S., Mendelova, M., Smith, A. G., & Davey, M. P. (2020). Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nature Communications, 11, Article 2527. https://doi.org/10.1038/s41467-020-16018-w
  43. Green, T. G. A., Sancho, L. G., Türk, R., Seppelt, R. D., & Hogg, I. D. (2011). High diversity of lichens at 84° S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biology, 34, 1211–1220. https://doi.org/10.1007/s00300-011-0982-5
  44. Gröndahl, F., Sidenmark, J., & Thomsen, A. (2009). Survey of waste water disposal practices at Antarctic research stations. Polar Research, 28(2), 298–306. https://doi.org/10.3402/polar.v28i2.6109
  45. Guidetti, R., Rebecchi, L., Cesari, M., & McInnes, S. J. (2014). Mopsechiniscus franciscae, a new species of a rare genus of Tardigrada from continental Antarctica. Polar Biology, 37(9), 1221–1233. https://doi.org/10.1007/s00300-014-1514-x
  46. Halanych, K. M., & Mahon, A. R. (2018). Challenging dogma concerning biogeographic patterns of Antarctica and the Southern Ocean. Annual Review of Ecology, Evolution, and Systematics. 49, 355–378. https://doi.org/10.1146/annurev-ecolsys121415-032139
  47. Headland, R. K. (2009). A Chronology of Antarctic Exploration: A Synopsis of Events and Activities from the Earliest Times until the International Polar Years, 2007–09, Bernard Quaritch Ltd. https://doi.org/10.1017/S0032247409008535
  48. Hughes, K. A., & Convey, P. (2010). The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: A review of current systems and practices. Global Environmental Change, 20(1), 96–112. https://doi.org/10.1016/j.gloenvcha.2009.09.005
  49. Hughes, K. A., Ireland, L. C., Convey, P., & Fleming, A. H. (2016). Assessing the effectiveness of specially protected areas for conservation of Antarctica’s botanical diversity. Conservation Biology, 30(1), 113–120. https://doi.org/10.1111/cobi.12592
  50. Hughes, K. A., Pescott, O. L., Peyton, J., Adriaens, T., Cottier-Cook, E. J., Key, G., Rabitsch, W., Tricarico, E., Barnes, D. K. A., Baxter, N., Belchier, M., Blake, D., Convey, P., Dawson, W, Frohlich, D., Gardiner, L. M., Gonzales-Moreno, P., James, R., Malumphy, C., … & Roy, H. E. (2020). Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Global Change Biology, 26(4), 2702–2716. https://doi.org/10.1111/gcb.14938
  51. IAATO. (2018). Report on IAATO operator use of Antarctic Peninsula landing sites and ATCM visitor site guidelines, 2017–2018 season, International Association of Antarctica Tour Operators, Information Paper 72, Antarctic Treaty Consultative Meeting XLI, 13–18 May 2018, Buenos Aires.
  52. Jansson, J. K., & Taş, N. (2014). The microbial ecology of permafrost. Nature Reviews Microbiology, 12(6), 414–425. https://doi.org/10.1038/nrmicro3262
  53. Kock, K.-H. (2007). Antarctic Marine Living Resources — exploitation and its management in the Southern Ocean. Antarctic Science, 19(2), 231–238. https://doi.org/10.1017/S0954102007000302
  54. Lee, J. R., Raymond, B., Bracegirdle, T. J., Chadès, I., Fuller, R. A., Shaw, J. D., & Terauds, A. (2017). Climate change drives expansion of Antarctic ice-free habitat. Nature, 547, 49–54. https://doi.org/10.1038/nature22996
  55. Meredith, M. P., & King, J. C. (2005). Rapid climate change in ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32(19), Article L 19604. https://doi.org/10.1029/2005GL024042
  56. Myrcha, A., & Tatur, A. (1991). Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research, 12(1), 3–24.
  57. Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., & Schofield, O. (2009). Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science, 323(5920), 1470–1473. https://doi.org/10.1126/science.1164533
  58. Neumann, B., Mikoleit, A., Bowman, J. S., Ducklow, H. W., & Müller, F. (2019). Ecosystem service supply in the Antarctic Peninsula Region: evaluating an expert-based assessment approach and a novel seascape data model. Frontiers in Environmental Science, 7, Article 157. https://doi.org/10.3389/fenvs.2019.00157
  59. Newsham, K. K., Hopkins, D. W., Carvalhais, L. C., Fretwell, P. T., Rushton, S. P., O’Donnell, A. G., & Dennis, P. G. (2016). Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nature Climate Change, 6, 182–186. https://doi.org/10.1038/nclimate2806
  60. Nielsen, U. N., & Wall, D. H. (2013). The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecology Letters, 16(3), 409–419. https://doi.org/10.1111/ele.12058
  61. Obryk, M. K., Doran, P. T., Friedlaender, A. S., Gooseff, M. N., Li, W., Morgan-Kiss, R. M., Priscu, J. C., Schofield, O., Stammerjohn, S. E., Steinberg, D. K., & Ducklow, H. W. (2016). Responses of Antarctic marine and freshwater ecosystems to changing ice conditions. BioScience, 66(10), 864–879. https://doi.org/10.1093/biosci/biw109
  62. Olalla, A., Moreno, L., & Valcárcel, Y. (2020). Prioritisation of emerging contaminants in the northern Antarctic Peninsula based on their environmental risk. Science of the Total Environment, 742, Article 140417. https://doi.org/10.1016/j.scitotenv.2020.140417
  63. Øvstedal, D. O., & Smith, R. I. L. (2001). Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press.
  64. Peeters, K., Verleyen, E., Hodgson, D. A., Convey, P., Ertz, D., Vyverman, W., & Willems, A. (2012). Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biology, 35(4), 543–554. https://doi.org/10.1007/s00300-011-1100-4
  65. Pertierra, L. R., Aragón, P., Shaw, J. D., Bergstrom, D. M., Terauds, A., & Olalla-Tárraga, M. A. (2017). Global thermal niche models of two European grasses show high invasion risks in Antarctica. Global Change Biology, 23(7), 2863–2873. https://doi.org/10.1111/gcb.13596
  66. Roberts, P., Newsham, K. K., Bardgett, R. D., Farrar J. F., & Jones, D. L. (2009). Vegetation cover regulates the quantity, quality and temporal dynamics of dissolved organic carbon and nitrogen in Antarctic soils. Polar Biology, 32(7), 999–1008. https://doi.org/10.1007/s00300-009-0599-0
  67. Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., & Berg, T. (1998). Arctic springtime depletion of mercury. Nature, 394, 331–332. https://doi.org/10.1038/28530
  68. Sladen, W. J. L., Menzie, C. M., & Reichel, W. L. (1966). DDT residues in Adélie penguins and a crabeater seal from Antarctica. Nature, 210, 670–673. https://doi.org/10.1038/210670a0
  69. Smith, R. I. L. (1966). Terrestrial and Freshwater Biotic components of the Western Antarctic Peninsula. In R. M. Ross, E. E. Hofmann, & L. B. Quetin (Eds.), Foundations for Ecological Research West of the Antarctic Peninsula (Antarctic Research Series, 70) (pp. 15–59). American Geophysical Union.
  70. Smith, R. I. L. (1984). Terrestrial Plant Biology of the subAntarctic and Antarctic. In R. M. Law (Ed.), Antarctic Ecology (pp. 61–162). Academic Press.
  71. Terauds, A., & Lee, J. R. (2016). Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Diversity and Distributions, 22(8), 836–840. https://doi.org/10.1111/ddi.12453
  72. Terauds, A., Chown, S. L., Morgan, F., Peat, H. J., Watts, D. J., Keys, H., Convey, P., & Bergstrom, D. M. (2012). Conservation biogeography of the Antarctic. Diversity and Distributions, 18(7), 726–741. https://doi.org/10.1111/j.1472-4642.2012.00925.x
  73. Tin, T., Liggett, D., Maher, P. T., & Lamers, M. (Eds.). (2014). Antarctic Futures — Human Engagement with the Antarctic Environment. Springer. https://doi.org/10.1007/978-94-007-6582-5
  74. Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., & Deb, P. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411–415. https://doi.org/10.1038/nature18645
  75. UNEP. (2002). Regionally based assessment of persistent toxic substances: Antarctica regional report, United Nations Environment Programme, Chemicals, Global Environment Facility, Geneva.
  76. Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D. A., Willems, A., Peeters, K., Van de Vijver, B., De Wever, A., Leliaert, F., & Sabbe, K. (2010). Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 4(2), 103–113. https://doi.org/10.1016/j.polar.2010.03.006
  77. Wang, X., Wang, C., Zhu, T., Gong, P., Fu, J., & Cong, Z. (2019). Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects. Environmental Pollution, 248, 191–208. https://doi.org/10.1016/j.envpol.2019.01.093
  78. Wania, F., & Mackay, D. (1995). A global distribution model for persistent organic chemicals. Science of the Total Environment, 160–161, 211–232. https://doi.org/10.1016/0048-9697(95)04358-8
  79. Woehler, E. J., Ainley, D., & Jabour, J. (2014). Human Impacts to Antarctic Wildlife: Predictions and Speculations for 2060. In T. Tin, D. Liggett, P. T. Maher, & M. Lamers (Eds), Antarctic Futures — Human Engagement with the Antarctic Environment (pp. 27-60). Springer. https://doi.org/10.1007/978-94-007-6582-5_2
  80. Yergeau, E., Newsham, K. K., Pearce, D. A., & Kowalchuk, G. A. (2007). Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environmental Microbiology, 9(11), 2670–2682. https://doi.org/10.1111/j.1462-2920.2007.01379.x
  81. Zucconi, L., Selbmann, L., Buzzini, P., Turchetti, B., Guglielmin, M., Frisvad, J. C., & Onofri, S. (2012). Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biology, 35, 749–757. https://doi.org/10.1007/s00300-011-1119-6