Terrestrial ecosystems of the Antarctic Peninsula and their responses to climate change and anthropogenic impacts
- Antarctic Peninsula,
- anthropogenic impacts,
- climate change,
- terrestrial ecosystems
Copyright (c) 2020 Ukrainian Antarctic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Antarctica and the Southern Ocean are unique natural laboratories where organisms adapted to extreme environmental conditions have evolved in isolation for millions of years. These unique biotic communities on Earth are facing complex climatic and environmental changes. Terrestrial ecosystems in the Antarctic Peninsula Region (APR) have experienced the highest rate of climate warming and, being the most impacted by human activities, are facing the greatest risk of detrimental changes. This review provides an overview of the most recent findings on how biotic communities in terrestrial ecosystems of the Antarctic Peninsula Region (APR) are responding and will likely respond to further environmental changes and direct anthropogenic impacts. Knowledge gained from studies on relatively simple terrestrial ecosystems could be very useful in predicting what may happen in much more complex ecosystems in regions with less extreme temperature changes. The rapid warming of the APR has led to the retreat of glaciers, the loss of snow and permafrost and the increase of ice-free areas, with a consequent enhancement of soil-forming processes, biotic communities, and food web complexity. However, most human activity is concentrated in APR coastal ice-free areas and poses many threats to terrestrial ecosystems such as environmental pollution or disturbances to soil communities and wildlife. People who work or visit APR may inadvertently introduce alien organisms and/or spread native species to spatially isolated ice-free areas. The number of introduced non-indigenous species and xenobiotic compounds in the APR is likely to be greater than currently documented, and several biosecurity and monitoring activities are therefore suggested to Antarctic national scientific programs and tourism operators to minimize the risk of irreversible loss of integrity by the unique terrestrial ecosystems of APR.
References
- Amesbury, M. J., Roland, T. P., Royles, J., Hodgson, D. A., Convey, P., Griffiths, H., & Charman, D. J. (2017). Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology, 27(11), 1616–1622. https://doi.org/10.1016/j.cub.2017.04.034
- Atkinson, A., Siegel, V., Pakhomov, E., & Rothery, P. (2004). Long-term decline in krill stocks and increase in salps within the Southern Ocean. Nature, 432, 100–103. https://doi.org/10.1038/nature02996
- Bargagli, R. (2005). Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact. Springer.
- Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400 (1–3), 212–226. https://doi.org/10.1016/j.scitotenv.2008.06.062
- Bargagli, R., Battisti, E., Focardi, S., & Formichi, P. (1993). Preliminary data on environmental distribution of mercury in northern Victoria Land, Antarctica. Antarctic Science, 5(1), 3–8. https://doi.org/10.1017/S0954102093000021
- Bargagli, R., Broady, P. A., & Walton, D. H. W. (1996). Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica). Antarctic Science, 8(2), 121–126. https://doi.org/10.1017/S0954102096000181
- Bargagli, R., Skotnicki, M. L, Marri, L., Pepi, M., Mackenzie, A., & Agnorelli, C. (2004). New record of moss and thermophilic bacteria species and physico-chemical properties of geothermal soils on the northwest slope of Mt. Melbourne (Antarctica). Polar Biology, 27(7), 423–431. https://doi.org/10.1007/s00300-004-0612-6
- Bargagli, R., Agnorelli, C., Borghini, F., & Monaci, F. (2005). Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environmental Science and Technology, 39(21), 8150–8155. https://doi.org/10.1021/es0507315
- Bergami, E., Rota, E., Caruso, T., Birarda, G., Vaccari, L., & Corsi, I. (2020). Plastic everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biology Letters, 16(6), Article 20200093, https://doi.org/10.1098/rsbl.2020.0093
- Bockheim, J. G. (1995). Permafrost distribution in the southern circumpolar region and its relation to the environment: A review and recommendations for further research. Permafrost and Periglacial Processes, 6(1), 27–45. https://doi.org/10.1002/ppp.3430060105
- Bockheim, J. G., & Ugolini, F.C. (1990). A review of pedogenic zonation in well-drained soils of the southern circumpolar region. Quaternary Research, 34(1), 47–66. https://doi.org/10.1016/0033-5894(90)90072-S
- Bockheim, J., Vieira, G., Ramos, M., López-Martinez, J., Serrano, E., Guglielmin, M., Wilhelm, K., & Nieuwendam, A. (2013). Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, 100, 215–223. https://doi.org/10.1016/j.gloplacha.2012.10.018
- Bokhorts, S., Convey, P., & Aerts, R. (2019). Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Current Biology, 29(10), 1721–1727. https://doi.org/10.1016/j.cub.2019.04.038
- Bölter, M., Blume, H.-P., Schneider, D., & Beyer, L. (1997). Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biology, 18, 295–304. https://doi.org/10.1007/s003000050191
- Brooks, S. T., Jabour, J., van den Hoff, J., & Bergstrom, D. M. (2019). Our footprint on Antarctica competes with nature for rare ice-free land. Nature Sustainability, 2, 185–190. https://doi.org/10.1038/s41893-019-0237-y
- Cabrerizo, A., Tejedo, P., Dachs, J., & Benayas, J. (2016). Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica). Science of the Total Environment, 569–570, 1500–1509. https://doi.org/10.1016/j.scitotenv.2016.06.240
- Cannone, N., Guglielmin, M., Convey, P., Worland, M. R., & Favero Longo, S. E. (2016). Vascular plant changes in extreme environments: effects of multiple drivers. Climatic Change, 134, 651–665. https://doi.org/10.1007/s10584-015-1551-7
- Cannone, N., Dalle Fratte, M., Convey, P., Worland, M. R., & Guglielmin, M. (2017). Ecology of moss banks on Signy Island (maritime Antarctic). Botanical Journal of the Linnean Society, 184(4), 518–533. https://doi.org/10.1093/botlinnean/box040
- Caruso, T., Hogg, I. D., Carapelli, A., Frati, F., & Bargagli, R. (2009). Large-scale spatial patterns in the distribution of Collembola (Hexapoda) species in Antarctic terrestrial ecosystems. Journal of Biogeography, 36(5), 879–886. https://doi.org/10.1111/j.1365-2699.2008.02058.x
- Caruso, T., Trokhymets, V., Bargagli, R., & Convey, P. (2013). Biotic interactions as a structuring force in soil communities: evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172, 495–503. https://doi.org/10.1007/s00442-012-2503-9
- Caruso, T., Hogg, I. D., Nielsen, U. N., Bottos, E. M., Lee, C. K., Hopkins, D. W., Cary, S. C., Barrett, J. E., Green, T. G. A., Storey, B. C., Wall, D. H., & Adams, B. J. (2019). Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals. Communications Biology, 2, Article 63. https://doi.org/10.1038/s42003-018-0260-y
- Chong, C.-W., Pearce, D. A., & Convey, P. (2015). Emerging spatial patterns in Antarctic prokaryotes. Frontiers in Microbiology, 6, Article 1058. https://doi.org/10.3389/fmicb.2015.01058
- Chown, S. L., & Convey, P. (2007). Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society B, Biological Sciences, 362, 2307–2331. https://doi.org/10.1098/rstb.2006.1949
- Chown, S. L., Huiskes, A. H. L., Gremmen, N. J. M., Lee, J. E., Terauds, A., Crosbie, K., Frenot, Y., Hughes, K. A., Imura, S., Kiefer, K., Lebouvier, M., Raymond, B., Tsujimoto, M., Ware, C., Van de Vijver, B., & Bergstrom, D. M. (2012). Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 109(13), 4938–4943. https://doi.org/10.1073/pnas.1119787109
- Chown, S. L., Clarke, A., Fraser, C. I., Cary, S. C., Moon, K. L., & McGeoch, M. A. (2015). The changing form of Antarctic biodiversity. Nature, 522, 431–438. https://doi.org/10.1038/nature14505
- Clucas, G. V., Dunn, M. J., Dyke, G., Emslie, S. D., Levy, H., Naveen, R., Polito, M. J., Pybus, O. G., Rogers, A. D., & Hart, T. (2014). A reversal of fortunes: climate change "winners" and "losers" in Antarctic Peninsula penguins. Scientific Reports, 4, Article 5024. https://doi.org/10.1038/srep05024
- Collins, G. E., Hogg, I. D., Convey, P., Sancho, L. G., Cowan, D. A., Lyons, W. B., Adams, B. J., Wall, D. H., & Green, T. G. A. (2020). Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 22293-22302. https://doi.org//10.1073/pnas.2007925117
- Convey, P., Gibson, J. A. E., Hillenbrand, C. D., Hodgson, D. A., Pugh, P. J. A., Smellie, J. L., & Stevens, M. I. (2008). Antarctic terrestrial life — challenging the history of the frozen continent? Biological Reviews of the Cambridge Philosophical Society, 83(2), 103–117. https://doi.org/10.1111/j.1469-185X.2008.00034.x
- Convey, P. (2013). Antarctic Ecosystems. In Encyclopedia of Biodiversity (2nd ed., pp. 179–188). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384719-5.00264-1
- Convey, P., & Peck, L. S. (2019). Antarctic environmental change and biological responses. Science Advances, 5(11), Article eaaz0888. https://doi.org/10.1126/sciadv.aaz0888
- Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A. & Vaughan, D. G. (2016). Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353(6296), 283–286. https://doi.org/10.1126/science.aae0017
- Cowan, D. A., Khan, N., Pointing, S. B., & Cary, S. C. (2010). Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22(6), 714–720. https://doi.org/10.1017/S0954102010000507
- Cowan, D. A., Chown, S. L., Convey, P., Tuffin, M., Hughes, K., Pointing, S., & Vincent, W. F. (2011). Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends in Microbiology, 19(11), 540–548. https://doi.org/10.1016/j.tim.2011.07.008
- da Silva, T. H., Silva, D. A. S., de Oliveira, F. S., Schaefer, C. E. G. R., Rosa, C. A., & Rosa, L. H. (2020). Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles, 24(4), 565–576. https://doi.org/10.1007/s00792-020-01176-y
- de Jesus, H. E., Peixoto, R. S., & Rosado, A. S. (2015). Bioremediation in Antarctic soils. Journal of Petroleum & Environmental Biotecnology, 6(6), Article 248. https://doi.org/10.4172/2157-7463.1000248
- Enriquez, N., Pertierra, L. R., Tejedo, P., Benayas, J., Greenslade, P., & Luciánez, M. J. (2019). The importance of longterm surveys on species introductions in Maritime Antarctica: first detection of Ceratophysella succinea (Collembola: Hypogastruridae). Polar Biology, 42(5), 1047–1051. https://doi.org/10.1007/s00300-019-02490-8
- Esteban, S., Moreno-Merino, L., Matellanes, R., Catalá, M., Gorga, M., Petrovic, M., López de Alda, M., Barceló, D., Silva, A., Durán, J. J., López-Martínez, J., & Valcárcel, Y. (2016). Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region. Environmental Research, 147, 179–192. https://doi.org/10.1016/j.envres.2016.01.034
- Fraser, W. R., Patterson-Fraser, D. L., Ribic, C. A., Schofied, O., & Ducklow, H. (2013). A nonmarine source of variability in Adelie penguin demography. Oceanography, 26(3): 207–209. https://doi.org/10.5670/oceanog.2013.64
- Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., & Bergstrom, D. M. (2005). Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80(1), 45–72. https://doi.org/10.1017/S1464793104006542
- Golledge, N. R., Everest, J. D., Bradwell, T., & Johnson, J. S. (2010). Lichenometry on Adelaide Island, Antarctic Peninsula: size-frequency studies, growth rates and snowpatches. Geografiska Annaler: Series A, Physical Geography, 92(1), 111–124. https://doi.org/10.1111/j.1468-0459.2010.00381.x
- Gonzáles-Alonso, S., Moreno-Merino, L., Esteban, S., López de Alda, M., Barceló, D., Durán, J. J., López-Martínez, J., Aceña, J., Pérez, S., Mastroianni, N., Silva, A., Catalá, M., & Valcárcel, Y. (2017). Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environmental Pollution, 229, 241–254. https://doi.org/10.1016/j.envpol.2017.05.060
- Gray, A., Krolikowski, M., Fretwell, P., Convey, P., Peck, L. S., Mendelova, M., Smith, A. G., & Davey, M. P. (2020). Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nature Communications, 11, Article 2527. https://doi.org/10.1038/s41467-020-16018-w
- Green, T. G. A., Sancho, L. G., Türk, R., Seppelt, R. D., & Hogg, I. D. (2011). High diversity of lichens at 84° S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biology, 34, 1211–1220. https://doi.org/10.1007/s00300-011-0982-5
- Gröndahl, F., Sidenmark, J., & Thomsen, A. (2009). Survey of waste water disposal practices at Antarctic research stations. Polar Research, 28(2), 298–306. https://doi.org/10.3402/polar.v28i2.6109
- Guidetti, R., Rebecchi, L., Cesari, M., & McInnes, S. J. (2014). Mopsechiniscus franciscae, a new species of a rare genus of Tardigrada from continental Antarctica. Polar Biology, 37(9), 1221–1233. https://doi.org/10.1007/s00300-014-1514-x
- Halanych, K. M., & Mahon, A. R. (2018). Challenging dogma concerning biogeographic patterns of Antarctica and the Southern Ocean. Annual Review of Ecology, Evolution, and Systematics. 49, 355–378. https://doi.org/10.1146/annurev-ecolsys121415-032139
- Headland, R. K. (2009). A Chronology of Antarctic Exploration: A Synopsis of Events and Activities from the Earliest Times until the International Polar Years, 2007–09, Bernard Quaritch Ltd. https://doi.org/10.1017/S0032247409008535
- Hughes, K. A., & Convey, P. (2010). The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: A review of current systems and practices. Global Environmental Change, 20(1), 96–112. https://doi.org/10.1016/j.gloenvcha.2009.09.005
- Hughes, K. A., Ireland, L. C., Convey, P., & Fleming, A. H. (2016). Assessing the effectiveness of specially protected areas for conservation of Antarctica’s botanical diversity. Conservation Biology, 30(1), 113–120. https://doi.org/10.1111/cobi.12592
- Hughes, K. A., Pescott, O. L., Peyton, J., Adriaens, T., Cottier-Cook, E. J., Key, G., Rabitsch, W., Tricarico, E., Barnes, D. K. A., Baxter, N., Belchier, M., Blake, D., Convey, P., Dawson, W, Frohlich, D., Gardiner, L. M., Gonzales-Moreno, P., James, R., Malumphy, C., … & Roy, H. E. (2020). Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Global Change Biology, 26(4), 2702–2716. https://doi.org/10.1111/gcb.14938
- IAATO. (2018). Report on IAATO operator use of Antarctic Peninsula landing sites and ATCM visitor site guidelines, 2017–2018 season, International Association of Antarctica Tour Operators, Information Paper 72, Antarctic Treaty Consultative Meeting XLI, 13–18 May 2018, Buenos Aires.
- Jansson, J. K., & Taş, N. (2014). The microbial ecology of permafrost. Nature Reviews Microbiology, 12(6), 414–425. https://doi.org/10.1038/nrmicro3262
- Kock, K.-H. (2007). Antarctic Marine Living Resources — exploitation and its management in the Southern Ocean. Antarctic Science, 19(2), 231–238. https://doi.org/10.1017/S0954102007000302
- Lee, J. R., Raymond, B., Bracegirdle, T. J., Chadès, I., Fuller, R. A., Shaw, J. D., & Terauds, A. (2017). Climate change drives expansion of Antarctic ice-free habitat. Nature, 547, 49–54. https://doi.org/10.1038/nature22996
- Meredith, M. P., & King, J. C. (2005). Rapid climate change in ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32(19), Article L 19604. https://doi.org/10.1029/2005GL024042
- Myrcha, A., & Tatur, A. (1991). Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research, 12(1), 3–24.
- Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., & Schofield, O. (2009). Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science, 323(5920), 1470–1473. https://doi.org/10.1126/science.1164533
- Neumann, B., Mikoleit, A., Bowman, J. S., Ducklow, H. W., & Müller, F. (2019). Ecosystem service supply in the Antarctic Peninsula Region: evaluating an expert-based assessment approach and a novel seascape data model. Frontiers in Environmental Science, 7, Article 157. https://doi.org/10.3389/fenvs.2019.00157
- Newsham, K. K., Hopkins, D. W., Carvalhais, L. C., Fretwell, P. T., Rushton, S. P., O’Donnell, A. G., & Dennis, P. G. (2016). Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nature Climate Change, 6, 182–186. https://doi.org/10.1038/nclimate2806
- Nielsen, U. N., & Wall, D. H. (2013). The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecology Letters, 16(3), 409–419. https://doi.org/10.1111/ele.12058
- Obryk, M. K., Doran, P. T., Friedlaender, A. S., Gooseff, M. N., Li, W., Morgan-Kiss, R. M., Priscu, J. C., Schofield, O., Stammerjohn, S. E., Steinberg, D. K., & Ducklow, H. W. (2016). Responses of Antarctic marine and freshwater ecosystems to changing ice conditions. BioScience, 66(10), 864–879. https://doi.org/10.1093/biosci/biw109
- Olalla, A., Moreno, L., & Valcárcel, Y. (2020). Prioritisation of emerging contaminants in the northern Antarctic Peninsula based on their environmental risk. Science of the Total Environment, 742, Article 140417. https://doi.org/10.1016/j.scitotenv.2020.140417
- Øvstedal, D. O., & Smith, R. I. L. (2001). Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press.
- Peeters, K., Verleyen, E., Hodgson, D. A., Convey, P., Ertz, D., Vyverman, W., & Willems, A. (2012). Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biology, 35(4), 543–554. https://doi.org/10.1007/s00300-011-1100-4
- Pertierra, L. R., Aragón, P., Shaw, J. D., Bergstrom, D. M., Terauds, A., & Olalla-Tárraga, M. A. (2017). Global thermal niche models of two European grasses show high invasion risks in Antarctica. Global Change Biology, 23(7), 2863–2873. https://doi.org/10.1111/gcb.13596
- Roberts, P., Newsham, K. K., Bardgett, R. D., Farrar J. F., & Jones, D. L. (2009). Vegetation cover regulates the quantity, quality and temporal dynamics of dissolved organic carbon and nitrogen in Antarctic soils. Polar Biology, 32(7), 999–1008. https://doi.org/10.1007/s00300-009-0599-0
- Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., & Berg, T. (1998). Arctic springtime depletion of mercury. Nature, 394, 331–332. https://doi.org/10.1038/28530
- Sladen, W. J. L., Menzie, C. M., & Reichel, W. L. (1966). DDT residues in Adélie penguins and a crabeater seal from Antarctica. Nature, 210, 670–673. https://doi.org/10.1038/210670a0
- Smith, R. I. L. (1966). Terrestrial and Freshwater Biotic components of the Western Antarctic Peninsula. In R. M. Ross, E. E. Hofmann, & L. B. Quetin (Eds.), Foundations for Ecological Research West of the Antarctic Peninsula (Antarctic Research Series, 70) (pp. 15–59). American Geophysical Union.
- Smith, R. I. L. (1984). Terrestrial Plant Biology of the subAntarctic and Antarctic. In R. M. Law (Ed.), Antarctic Ecology (pp. 61–162). Academic Press.
- Terauds, A., & Lee, J. R. (2016). Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Diversity and Distributions, 22(8), 836–840. https://doi.org/10.1111/ddi.12453
- Terauds, A., Chown, S. L., Morgan, F., Peat, H. J., Watts, D. J., Keys, H., Convey, P., & Bergstrom, D. M. (2012). Conservation biogeography of the Antarctic. Diversity and Distributions, 18(7), 726–741. https://doi.org/10.1111/j.1472-4642.2012.00925.x
- Tin, T., Liggett, D., Maher, P. T., & Lamers, M. (Eds.). (2014). Antarctic Futures — Human Engagement with the Antarctic Environment. Springer. https://doi.org/10.1007/978-94-007-6582-5
- Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., & Deb, P. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411–415. https://doi.org/10.1038/nature18645
- UNEP. (2002). Regionally based assessment of persistent toxic substances: Antarctica regional report, United Nations Environment Programme, Chemicals, Global Environment Facility, Geneva.
- Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D. A., Willems, A., Peeters, K., Van de Vijver, B., De Wever, A., Leliaert, F., & Sabbe, K. (2010). Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 4(2), 103–113. https://doi.org/10.1016/j.polar.2010.03.006
- Wang, X., Wang, C., Zhu, T., Gong, P., Fu, J., & Cong, Z. (2019). Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects. Environmental Pollution, 248, 191–208. https://doi.org/10.1016/j.envpol.2019.01.093
- Wania, F., & Mackay, D. (1995). A global distribution model for persistent organic chemicals. Science of the Total Environment, 160–161, 211–232. https://doi.org/10.1016/0048-9697(95)04358-8
- Woehler, E. J., Ainley, D., & Jabour, J. (2014). Human Impacts to Antarctic Wildlife: Predictions and Speculations for 2060. In T. Tin, D. Liggett, P. T. Maher, & M. Lamers (Eds), Antarctic Futures — Human Engagement with the Antarctic Environment (pp. 27-60). Springer. https://doi.org/10.1007/978-94-007-6582-5_2
- Yergeau, E., Newsham, K. K., Pearce, D. A., & Kowalchuk, G. A. (2007). Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environmental Microbiology, 9(11), 2670–2682. https://doi.org/10.1111/j.1462-2920.2007.01379.x
- Zucconi, L., Selbmann, L., Buzzini, P., Turchetti, B., Guglielmin, M., Frisvad, J. C., & Onofri, S. (2012). Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biology, 35, 749–757. https://doi.org/10.1007/s00300-011-1119-6