No 16 (2017): Ukrainian Antarctic Journal


A.V. Soina
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv
G.P. Milinevsky
Taras Shevchenko National University of Kyiv, Kyiv, Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv
Yu.M. Yampolsky
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv
Published June 5, 2018
  • weekend-effect,
  • aerosol,
  • AOT,
  • precipitable water vapor,
  • Ångström exponent,
  • anthropogenic influence,
  • correlation,
  • Antarctica
  • ...More


Objectives: (1) comparison of the 7-day variation of aerosol parameters of industrially developed regions of the Earth with weekly changes in the Antarcticа as an area with a minimum technogenic load; (2) test the anthropogenic nature hypothesis of 7-day variation of aerosol content in the atmosphere (weekend-effect), which was previously proposed by the authors on the research of global thunderstorm activity; (3) weekend changes have not been revealed in Antarctic region due to the neglect anthropogenic load in this area. The data from the aerosol international AERONET monitoring network was used to search for 7-day variations. Five-year aerosol optical thickness (AOT) data in two spectral channels of 440 and 870 nm for the 2009-2013 period were processed. The Ångström exponent was calculated from the measurements at these two wavelengths, and the precipitable water vapor data have been revealed from measurements in the spectral channels of 936 and 870 nm. We use the Antarctic AERONET stations data, as a “reference” values due to minimum anthropogenic load on the environment in this area. Data processing was performed by the epoch-superimposing method. As a result of the statistical analysis of aerosol parameters behavior in the atmosphere over the most industrially developed regions of Europe, North America and Asia, seven-day periodicity has been revealed, that confirms the increasing technogenic impact on the environment. The main conclusion of the work includes: (1) the weekend effect, previously found in the concentration of atmospheric aerosol for individual cities, is also manifested in the mean data of different monitoring stations of the studied regions (North America, Europe, Asia); (2) the 7-day cycle behavior in different parts of the world is similar for all aerosol parameters, when the maximum value is observed in the second half of the working week and at least on weekends; (3) in the Antarctic region as the area with the minimum of technogenic load, the weekend-effect was not found, which indicates the exclusively anthropogenic nature of weekly variations in the atmospheric aerosol parameters.


  1. Koloskov, A. V., Yampolski, Yu. M. 2009. Nablyudeniya izlucheniya energosistem Severoamerikanskogo kontinenta v Antarktike [Observations of radiation from North American in Antarctica]. Radiofizika i radioastronomiya [Radio Physics and Radio Astronomy], 14 (4), 367-376. [In Russian] .
  2. Paznukhov, A. V., Yampolsky, Yu. M., Zanimonsky, Ye. M., Soina, A. V. 2012. Poisk weekend-effekta v variatsii intensivnosti prirodnyih SNCh shumov [Search of weekend effect in natural SNCh noises intensity variation]. Radiofizika i radioastronomiya [Radio Physics and Radio Astronomy], 17(1), 67-73. [In Russian].
  3. Soina, A.V., Milinevsky, G.P., Yampolsky, Yu.M. 2015. Semidnevnyie variatsii v atmosfernyih aerozolyah [Seven-day variations in atmospheric aerosol], Radiofizika i radioastronomiya [Radio Physics and Radio Astronomy], 20(2), 109-121. [In Russian].
  4. Baumer D., Rinke R., Vogel B. Weekly periodicities of Aerosol Optical Thickness over Central Europe - evidence of an anthropogenic direct aerosol effect. Atmos. Chem. Phys. 2008, 83-90.
  5. Chen, S., Huang, J., Jiang, N., Zang, Z., Guan, X., Ma, X., Jia, Z., Zhang, X., Zhang, Y., Huang, K., Xu, X., Zhang, G., Li, J., Yang, R., Liao, S. 2017. Estimations of anthropogenic dust emissions at global scale from 2007 to 2010. Atmos. Chem. Phys. Discuss.,
  6. Dubovik, O. and King, M. D. 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 105, 20673-20696.
  7. Dubovik, O., Lapyonok, T., Kaufman, Y. J., Chin, M., Ginoux, P., Kahn, R. A., Sinyuk, A. 2008. Retrieving Global Aerosol Sources from Satellites Using Inverse Modeling. Atm. Chem. Phys. 8, 209-250.
  8. Earl, N., Simmonds, I., Tapper, N. J. 2016. Weekly cycles in peak time temperatures and urban heat island intensity. Environmental Research Letters, 11(7).
  9. Giles, D. M., Holben, B. N., Eck,T. F., Sinyuk,A., Smirnov, A., Slutsker, I., Dickerson, R. R., Thompson, A. M., Schafer, J. S. 2012. An analysis of AERONET aerosol absorption properties and classifications representative of aerosolsource regions. J. Geophys. Res., 117, D17203.
  10. Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A. 1998. AERONET - a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1-16.
  11. Huttunen, J., Arola, A., Myhre, G., Lindfors, A. V., Mielonen, T., Mikkonen, S., Schafer, J. S., Tripathi, S. N., Wild, M., Komppula, M., Lehtinen, K. E. J. 2014. Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes. Atmos. Chem. Phys., 14, 6103-6110.
  12. Kourtidis, K., Stathopoulos, S., Georgoulias, A. K., Alexandri, G., Rapsomanikis, S. 2015. A study of the impact of synoptic weather conditions and water vapor on aerosol-cloud relationships over major urban clusters of China. Atmos.Chem. Phys., 15, 10955-10964., 2015.
  13. Laux, P., Kunstmann, H. 2008. Detection of regional weekly weather cycles across Europe. Environ. Res. Lett., 3, 044005. 7.
  14. Milinevsky, G., Danylevsky, V., Bovchaliuk, V., Bovchaliuk, A., Goloub, Ph., Dubovik, O., Kabashnikov, V., Chaikovsky, A., Miatselskaya, N., Mishchenko, M., Sosonkin, M. 2014. Aerosol seasonal variations over urban-industrial regions in Ukraine according to AERONET and POLDER measurements. Atmos. Meas. Tech., 7, 1459-1474.
  15. Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T., Dolgii, S. I., Herber, A. B., Nagai, T., Neely, III R.R., Nevzorov, A. V., Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., Vernier, J. P. 2014. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett., 41, 7763-7769.
  16. Seinfeld, J.H., Pandis, S.N. 2016. Atmospheric chemistry and physics: from air pollution to climate change. Third edition. Hoboken, New Jersey, US: Wiley, 1121. ISBN 9781119221173.
  17. Stallins, J.A., Carpenter, J., Bentley, M.L., Ashley, W.S., Mulholland, J.A. 2013. Weekend-weekday aerosols and geographic variability in cloud-to-ground lightning for the urban region of Atlanta, Georgia, USA. Regional Environmental Change, 13(1), 137-151.
  18. You, Q., Kang, S., Flugel, W.A., Sanchez-Lorenzo, A., Yan, Y., Xu,Y., Huang, J. 2009. Does a weekend effect in diurnal temperature range exist in the eastern and central Tibetan Plateau. Enviromental Research Lettets, 4, 045202, 7.
  19. Zuev, V. V., Burlakov, V. D., Nevzorov, A. V., Pravdin, V. L., Savelieva, E. S., Gerasimov, V. V. 2017. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia). Atmos. Chem. Phys., 17, 3067-3081.