Ukrainian Antarctic journal

No 2 (2021): Ukrainian Antarctic Journal

The first Ukrainian permanent GNSS station in Antarctica: processing and analysis of observation data

І. Savchyn
Lviv Polytechnic National University, Lviv, 79013, Ukraine
Yu. Otruba
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
K. Tretyak
Lviv Polytechnic National University, Lviv, 79013, Ukraine
Published December 31, 2021
  • coordinate time series,
  • geophysical factors,
  • harmonic oscillations,
  • permanent GNSS station ASAV


The main purpose of this work is to study and analyze the coordinate time series of the first Ukrainian permanent Global Navigation Satellite System (GNSS) station in Antarctica — Antarctic Station Academic Vernadsky (ASAV). We also aimed to do a comprehensive study of geophysical factors on the coordinate time series values and determine the values of the displacement components of this GNSS station. Processing of measurements was performed using the software Bernese GNSS Software v.5.2. The Bernese Processing Engine (BPE) module and the RNX2SNX (RINEX-TO-SINEX) processing algorithm were used to obtain daily solutions of permanent GNSS station ASAV. Daily solutions of the permanent GNSS station ASAV and the vector of its displacements were determined in the coordinate system IGb08. The vector of the permanent GNSS station ASAV has a northeasterly direction. The obtained results are consistent with the model of tectonic plate movements of this region. To study the characteristic periods of harmonic oscillations of coordinate time series of permanent GNSS station ASAV due to various geophysical factors. A set of studies was conducted, which included the development of an algorithm and a package of applications for processing time series and determining optimal curves that most accurately describe them. Thus, for each time series, the original equation is used to determine the optimal period of oscillation. As a result, an anomalous distribution of fluctuations in the values of permanent GNSS station ASAV with different periods was revealed — this indicates the complex nature of the influence of geophysical factors on the spatial location and confirms the need for systematic studies of such factors on the stability and displacement of GNSS station. It is established that the permanent GNSS station ASAV is exposed to seasonal oscillations, associated with changes in environmental conditions.


  1. Bakhmutov, V. (1998). Geological review of Argentine islands аrchipelago and adjoining territory of the Antarctic Peninsula. Bulletin of the Ukrainian Antarctic Center, 2, 77–84.
  2. Berrocoso, M., Fernández-Ros, A., Prates, G., García, A., & Kraus, S. (2016). Geodetic implications on block formation and geodynamic domains in the South Shetland Islands, Antarctic Peninsula. Tectonophysics, 666, 211–219.
  3. Bevis, M., Kendrick, E., Smalley Jr, R., Dalziel, I., Caccamise, D., Sasgen, I., Helsen, M., Taylor, F. W., Zhou, H., Brown, A., Raleigh, D., Willis, M., Wilson, T., & Konfal, S. (2009). Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochemistry. Geophysics. Geosystems, 10, 10.
  4. British Antarctic Survey. (1981). British Antarctic Territory geological map. Sheet 3. Southern Graham Land [map]. 1:500000. BAS 500G series. Cambridge, British Antarctic Survey.
  5. Cisak, J., Milinevsky, G., Danylevsky, V., Glotov, V., Chizhe vsky, V., Kovalenok, S., Olijnyk, A., & Zanimonskiy, Y. (2008). Atmospheric Impact on GNSS Observations, Sea Level Change Investigations and GPS-Photogrammetry Ice Cap Survey at Vernadsky Station in Antarctic Peninsula. In A. Capra & R. Dietrich (Eds.), Geodetic and Geophysical Observations in Antarctica (pp.191–209). Springer, Berlin, Heidelberg.
  6. Curtis, R. (1966). The petrology of the Graham coast, Graham Land (Vol. 50). British Antarctic Survey.
  7. Dach, R., Lutz, S., Walser, P., & Fridez, P. (Eds.). (2015). Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, University of Bern, Bern Open Publishing.
  8. Dietrich, R. (2001). Present status of the SCAR GPS epoch campaigns (Report 20). SCAR.
  9. Dietrich, R., & Rülke, A. (2002). The SCAR GPS campaigns in the ITRF2000 (Report 21). SCAR.
  10. Dietrich, R., Rülke, A., Ihde, J., Lindner, K., Miller, H., Niemeier, W., Schenke, H.-W., & Seeber, G. (2004). Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Global and Planetary Change, 42(1–4), 313–321.
  11. Hardy, R. A. (2019). Combination of geodetic data over the Antarctic Ice Sheet for monthly mass variation solutions [Doctoral dissertation]. University of Colorado at Boulder.
  12. Jiang, W. P., E, D.-C., Zhan, B.-W., & Liu, Y.-W. (2009). New model of Antarctic plate motion and its analysis. Chinese Journal of Geophysics, 52(1), 23–32.
  13. Kylchitskiy, A., Tretyak, K., & Golubinka, Y. I. (2010). Detailed geodynamic model of Penolа Fault (Antarctic Peninsula) on the base of geodetic measurements and geologicalgeophysical data. Geodynamics, 1(9), 5–9. (In Ukrainian)
  14. Matveev, A. J., Milinevsky, G., Schenke, H.-W., Shibuya, K., Sjöberg, L. E., Zakrajsek, A., Fritsche, M., Rülke, A., Dietrich, R., Groh, A., Knöfel, C., Scheinert, M., Capra, A., Cisak, J., Dongchen, E., Eiken, T., Fox, A., Hothem, L. D., Johnston, G., & Malaimani, E. C. (2015). The Antarctic Regional GPS Network Densification: Status and Results. In C. Rizos & P. Willis (Eds), IAG 150 Years. International Association of Geodesy Symposia (Vol. 143, pp.133–139). Springer, Cham.
  15. Rosado, B., Fernández-Ros, A., Berrocoso, M., Prates, G., Gárate, J., de Gil, A., & Geyer, A. (2019). Volcano-tectonic dynamics of Deception Island (Antarctica): 27 years of GPS observations (1991–2018). Journal of Volcanology and Geothermal Research, 381, 57–82.
  16. Savchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola Strait — Lemaire Channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia, 18, 2(202), 253–265.
  17. Tretyak, K. R. (2013). Analysis of periodic vertical displacements of the Earth’s crust according to the data of permanent satellite stations. In K. R. Tretyak, Geoinformation monitoring of environment: GPS and GIS technologies (pp.75–80). Vydavnytstvo Lvivskoi politekhniky. (In Ukrainian)
  18. Tretyak, K. R., Smirnova, O. M., & Bredeleva, T. M. (2012). Doslidzhennya periodychnykh zmin vysotnoho polozhennya suputnykovykh permanentnykh stantsiy svitu [Study of periodic сhanges of the world satellite permanent stations altitudes]. Geodynamics, 1(12), 11–29. (In Ukrainian)
  19. Tretyak, K., Hlotov, V., Golubinka, Y., & Marusazh, K. (2016). Complex geodetic research in Ukrainian Antarctic station "Academician Vernadsky" (years 2002–2005, 2013–2014). Reports on Geodesy and Geoinformatics, 100(1), 149–163.
  20. UNAVCO. (2021). Plate motion calculator.
  21. Zanutta, A., Negusini, M., Vittuari, L., Cianfarra, P., Salvini, F., Mancini, F., Sterzai, P., Dubbini, M., Galeandro, A., & Сapra, A. (2017). Monitoring geodynamic activity in the Victoria Land, East Antarctica: Evidence from GNSS measurements. Journal of Geodynamics, 110, 31–42.
  22. Zanutta, A., Negusini, M., Vittuari, L., Martelli, L., Cianfarra, P., Salvini, F., Mancini, F., Sterzai, P., Dubbini, M., & Capra, A. (2018). New Geodetic and Gravimetric Maps to Infer Geodynamics of Antarctica with Insights on Victoria Land. Remote Sensing, 10(10), 1608.