Ukrainian Antarctic journal

No 2 (2021): Ukrainian Antarctic Journal
Articles

Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv by Umkehr observations

Yu. Andrienko
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
G. Milinevsky
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; International Center of Future Science, College of Physics, Jilin University, Changchun, 130012, China
V. Danylevsky
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Published December 31, 2021
Keywords
  • climate,
  • Dobson spectrophotometer,
  • ozone hole,
  • seasonal variation,
  • stratosphere,
  • total ozone content
  • ...More
    Less

Abstract

The Umkehr observations over Kyiv (Ukraine) and Antarctic Peninsula areas were processed for the first time to retrieve and analyse the vertical distribution of ozone. The Umkehr observations have been pre-processed using the UMK92 software package proposed by the World Ozone and UV-radiation Data Centre (WOUDC). The set of the calculated vertical ozone profiles for Kyiv–Goloseyev station (2011–2020) and Akademik Vernadsky station (2005–2009) has been obtained. Analysis of ozone profiles observed with Dobson spectrophotometer D040 indicates that the maximum ozone concentration is located in the altitude range of 15–25 km with an average height of 19.8 ± 1.4 km. It corresponds to the layer of maximum ozone concentration in the mid-latitude stratosphere. The maximum ozone partial content in Dobson Units per the layers (DU/layer) with thickness of 5 km altitude for most of the years are of 60–80 DU/layer. There are also days with the maximum ozone content significantly larger than an average. A characteristic feature of the profiles is that the lower ozone content occur in summer and autumn months in the range of 60–75 DU/layer. The winter and spring profiles demonstrate higher ozone values at the maximum. To analyse the vertical profiles of ozone in Antarctic Peninsula area, we use Umkehr data from observations at the Akademik Vernadsky station with the Dobson D123 spectrophotometers in 2005–2009. The data processing and the calculation of the vertical ozone profiles was provided according to the methodology developed at the Kyiv–Goloseyev station. It is shown that the ozone profiles at the Akademik Vernadsky station vary in a wide range of values of the maximum ozone concentration from 40 to 110 DU/layer. Ozone content at maximum of vertical distribution was changing dramatically from day to day in the Antarctic region during the ozone hole period.

References

  1. Bahramvash Shams, S., Walden, V. P., Petropavlovskikh, I., Tarasick, D., Kivi, R., Oltmans, S., Johnson, B., Cullis, P., Sterling, C. W., Thölix, L., & Errera, Q. (2019). Variations in the vertical profile of ozone at four high-latitude Arctic sites from 2005 to 2017. Atmospheric Chemistry and Physics, 19, 9733–9751. https://doi.org/10.5194/acp-19-9733-2019
  2. Ball, W. T., Alsing, J., Staehelin, J., Davis, M. S., Froidevaux, L., & Peter, T. (2019). Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability. Atmospheric Chemistry and Physics, 19, 12731–12748. https://doi.org/10.5194/acp-19-12731-2019
  3. Bass, A. M., & Paur, R. J. (1985). The ultraviolet crosssection of ozone: I. The measurements. In C. S. Zerefos, A. Ghazi (Eds.), Atmospheric Ozone (pp. 606—610). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5313-0_120
  4. Bernhard, G., Petropavlovskikh, I., & Mayer, B. (2017). Retrieving vertical ozone profiles from measurements of global spectral irradiance. Atmospheric Measurement Techniques, 10, 4979–4994. https://doi.org/10.5194/amt-10-4979-2017
  5. Brewer, A. W. (1949). Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quarterly Journal of the Royal Meteorological Society, 75(326), 351–363. https://doi.org/10.1002/qj.49707532603
  6. Dobson, G. M. B., & Harrison, D. N. (1926). Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proceedings of the Royal Society of London A, 110, 660–693. https://doi.org/10.1098/rspa.1926.0040
  7. Dütsch, H. U. (1959). Vertical ozone distribution from Umkehr observations. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 11, 240–251.
  8. Evtushevsky, O., Grytsai, A., & Milinevsky, G. (2014). On the regional distinctions in annual cycle of total ozone in the northern midlatitudes. Remote Sensing Letters, 5(3), 205–212. http://dx.doi.org/10.1080/2150704X.2014.894653
  9. Fusco, A. C., & Salby, M. L. (1999). Interannual variations of total ozone and their relationship to variations of planetary wave activity. Journal of Climate, 12(6), 1619–1629. https://doi.org/10.1175/1520-0442(1999)012<1619:ivotoa>2.0.co;2
  10. Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., & Birner, T. (2011). The extratropical upper troposphere and lower stratosphere. Reviews of Geophysics, 49(3). https://doi:10.1029/2011RG000355
  11. Götz, F. W. P., Meetham, A. R., & Dobson, G. M. B. (1934). The vertical distribution of ozone in the atmosphere. Proceedings of the Royal Society of London. Seria-A, 145, 416–446. https://doi.org/10.1098/rspa.1934.0109
  12. Hardiman, S. C., Lin, P., Scaife, A. A., Dunstone, N. J., & Ren, H.-L. (2017). The influence of dynamical variability on the observed Brewer-Dobson circulation trend. Geophysical Research Letters, 44(6), 2885–2892. https://doi.org/10.1002/2017GL072706
  13. Harris, N. R. P., Hassler, B., Tummon, F., Bodeker, G. E., Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson, J., Bhartia, P. K., Boone, C.D., Bourassa, A., Davis, S. M., Degenstein, D., Delcloo A., Frith, S. M., Froidevaux, L., Godin-Beekmann, S., Jones, N., Kurylo, M. J., ... & Zawodny, J. M. (2015). Past changes in the vertical distribution of ozone – Part 3: Analysis and interpretation of trends. Atmospheric Chemistry and Physics, 15, 9965–9982. https://doi:10.5194/acp-15-9965-2015
  14. Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y. A. R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., & Zhai, P. (2013). Observations: Atmosphere and Surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp.159–254). Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA. https://www.ipcc.ch/report/ar5/wg1/
  15. Hassler, B., Petropavlovskikh, I., Staehelin, J., August, T., Bhartia, P. K., Clerbaux, C., Degenstein, D., Mazière, M., Dinelli, B. M., Dudhia, A., Dufour, G., Frith, S. M., Froidevaux, L., Godin-Beekmann, S., Granville, J., Harris, N. R. P., Hoppel, K., Hubert, D., Kasai, Y., ... & Zawodny, J. M. (2014). Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability. Atmospheric Measurement Techniques, 7, 1395–1427. https://doi.org/10.5194/amt-7-1395-2014
  16. Hood, L. L., & Zaff, D. A. (1995). Lower stratospheric stationary waves and the longitude dependence of ozone trends in winter. Journal Geophysical Research, 100(D12), 25791–25800. https://doi.org/10.1029/95JD01943
  17. Komhyr, W. D., & Evans, R. D. (2008). Operations Handbook – Ozone Observations with a Dobson Spectrophotometer. GAW Report No. 183. World Meteorological Organization, Geneva, 2008. https://gml.noaa.gov/ozwv/dobson/GAW183-Dobson-WEB.pdf
  18. Laeng, A., Grabowski, U., von Clarmann, T., Stiller, G., Glatthor, N., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., Sofieva, V., Petropavlovskikh, I., Hubert, D., Bathgate, T., Bernath, P., Boone, C. D., Clerbaux, C., Coheur, P., Damadeo, R., ... & Zawodny, J. (2014). Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles. Atmospheric Measurement Techniques, 7, 3971–3987. https://doi.org/10.5194/amt-7-3971-2014
  19. Mateer, C. L., & Dütsch, H. U. (1964). Uniform evaluation of Umkehr observations from the world ozone network: Part I, Proposed standard Umkehr evaluation technique. National Center for Atmospheric Research.
  20. Mateer, C. L., & Deluisi, J. J. (1992). A new Umkehr inversion algorithm. Journal of Atmospheric and Terrestrial Physics, 54(5), 537−556. https://doi.org/10.1016/0021-9169(92)90095-3
  21. Milinevsky, G. P., Danylevsky, V. O., Grytsai, A. V., Evtushevsky, O. M., Kravchenko, V. O., Bovchaliuk, A. P., Bovchaliuk, V. P., Sosonkin, M. G., Goloub, Ph., Savitska, L. Y., Udodov, E. V., & Voytenko, V. P. (2012). Recent developments of atmospheric research in Ukraine. Advances in astronomy and space physics, 2(2), 114–120. https://doi.org/10.1007/978-90-481-9618-0_32
  22. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.018.
  23. Petropavlovskikh, I., Bhartia, P. K., & DeLuisi, J. (2005). New Umkehr ozone profile retrieval algorithm optimized for climatological studies. Geophysical Research Letters, 32(16). https://doi.org/10.1029/2005GL023323
  24. Rex, M., Salawitch, R. J., von der Gathen, P., Harris, N. R. P., Chipperfield, M. P., & Naujokat, B. (2004). Arctic ozone loss and climate change. Geophysical Research Letters, 31(4), L04116. https://doi.org/10.1029/2003GL018844
  25. Staehelin, J., Kegel, R., & Harris, N. R. P. (1998). Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926—1996. Journal of Geophysical Research: Atmospheres, 103(D7), 8389—8399. https://doi.org/10.1029/97JD03650
  26. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., & Schill, H. (1998). Total ozone series at Arosa (Switzerland): Homogenization and data comparison. Journal of Geophysical Research: Atmospheres, 103(D5), 5827–5841. https://doi.org/10.1029/97JD02402
  27. Steinbrecht, W., Froidevaux, L., Fuller, R., Wang, R., Anderson, J., Roth, C., Bourassa, A., Degenstein, D., Damadeo, R., Zawodny, J., Frith, S., McPeters, R., Bhartia, P., Wild, J., Long, C., Davis, S., Rosenlof, K., Sofieva, V., Walker, K., ... & Tummon, F. (2017). An update on ozone profile trends for the period 2000 to 2016. Atmospheric Chemistry and Physics, 17, 10675–1069. https://doi.org/10.5194/acp-17-10675-2017
  28. Stone, K., Tully, M. B., Rhodes, S. K. & Schofield, R. (2015). A new Dobson Umkehr ozone profile retrieval method optimising information content and resolution. Atmospheric Measurement Techniques, 8, 1043–1053. https://doi.org/10.5194/amt-8-1043-2015
  29. WMO (World Meteorological Organization). (1998). The fifth biennial WMO consultation on Brewer ozone and UV spectrophotometer operation, calibration, and data reporting (Report No 139). Geneva, Switzerland. https://library.wmo.int/index.php?lvl=notice_display&id=11071#.Ya5DCNBBxZU
  30. WMO (World Meteorological Organization). (2018). Scientific Assessment of Ozone Depletion: 2018. Global Ozone Research and Monitoring Project (Report No. 58). Geneva, Switzerland.