Ukrainian Antarctic journal

No 2 (2021): Ukrainian Antarctic Journal
Articles

Bacteria of the genus Pseudomonas isolated from Antarctic substrates

S. Hnatush
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
S. Komplikevych
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
O. Maslovska
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
O. Moroz
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
T. Peretyatko
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
А. Dzhulai
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
T. Krasnozhon
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
Published December 31, 2021
Keywords
  • enzymatic activity,
  • exopolysaccharides,
  • metal resistance,
  • phylogenetic reconstruction,
  • Pseudomonas arsenicoxidans,
  • Pseudomonas yamanorum
  • ...More
    Less

Abstract

The study’s primary purposes were establishing the number of microorganisms that exhibit hydrolytic activity in Antarctic soil and mosses samples, isolation of metal-resistant strains of bacteria, and description of their physiological and biochemical properties. Samples collected during the XXIII Ukrainian Antarctic Expedition in 2019 were used. The number of colony-forming units of microorganisms exhibiting proteolytic, amylolytic, cellulase, lipolytic activity was studied. Pure bacterial cultures were isolated using standard microbiological methods. Determination of resistance of isolates to heavy metals was estimated after their cultivation during ten days on agar plates with different concentrations of CdCl2 ⋅ 2.5H2O, CoCl2 ⋅ 6H2O, K2Cr2O7, FeSO4 ⋅ 7H2O, CuCl2 ⋅ 2H2O. Identification of strains was based on the sequencing of the 16S rRNA gene, morphological, physiological, and biochemical properties. Among the 23 isolates, nine metal-resistant strains were selected, four of which were identified as Pseudomonas yamanorum ІМV B-7916 and 79_102, and as P. arsenicoxidans 5A_1N_24, and 89_1T_89. Among the selected strains, the most resistant to heavy metals was P. yamanorum 79_102. All studied strains synthesize lipases during growth on medium with tween-20, which contains 0.5–1 mM of ferrous sulfate and copper (II) chloride. The studied strains produce exopolysaccharides during growth at 6 and 22 °C. The most effective among these strains exopolysaccharides are synthesized by P. arsenicoxidans 5A_1N_24 — 768 mg/g of dry weight. Our results expand the knowledge about the diversity of microorganisms of extreme biotopes, their properties, resistance to heavy metal compounds.

References

  1. Abakumov, E. V., Parnikoza, I. Yu., Vlasov, D. Yu., & Lupachev, A. V. (2016). Biogenic — abiogenic interaction in Antarctic ornithogenic soils. In O. V. Frank-Kamenetskaya, E. G. Panova, D. Yu. Vlasov, Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems (pp. 237–248). Springer, Cham.
  2. Afegbua, S. L., & Batty, L. C. (2019). Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. International Journal of Phytoremediation, 21(3), 200–208. https://doi.org/10.1080/15226514.2018.1501334
  3. Aprile, F., Heredia-Ponce, Z., Cazorla, F. M., de Vicente, A., & Gutiérrez-Barranquero, J. A. (2021). A large Tn 7-like transposon confers hyperresistance to copper in Pseudomonas syringae pv. syringae. Applied and Environmental Microbiology, 87(5), e02528-20. https://doi.org/10.1128/AEM.02528-20
  4. Arenas, F. A., Pugin, B., Henríquez, N. A., Arenas-Salinas, M. A., Díaz-Vásquez, W. A., Pozo, M. F., Muñoz, C. M., Chasteen, T. G., Pérez-Donoso, J. M., & Vásquez, C. C. (2014). Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica. Polar Science, 8(1), 40–52. https://doi.org/10.1016/j.polar.2014.01.001
  5. Arnau, V. G., Sánchez, L. A., & Delgado, O. D. (2015). Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment. International Journal of Systematic and Evolutionary Microbiology, 65(2), 424–431. https://doi.org/10.1099/ijs.0.065201-0
  6. Asencio, G., Lavin, P., Alegría, K., Domínguez, M., Bello, H., González-Rocha, G., & González-Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp: SMN 33.6 against multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17(1), 1–5. https://doi.org/10.1016/j.ejbt.2013.12.001
  7. Bedernichek, T., Loya, V., & Parnikoza, I. (2020). Content of biogenic and toxic elements in the leaves of Deschampsia antarctica É. Desv. (Poaceae): a preliminary study. Plant Introduction, 85/86, 124–129. https://doi.org/10.46341/PI2020017
  8. Bozal, N., Montes, M. J., & Mercadé, E. (2007). Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. International Journal of Systematic and Evolutionary Microbiology, 57(11), 2609–2612. https://doi.org/10.1099/ijs.0.65141-0
  9. Cai, P., Sun, X., Wu, Y., Gao, C., Mortimer, M., Holden, P. A., Redmile-Gordon, M., & Huang, Q. (2019). Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters, 1(3), 85–93. https://doi.org/10.1007/s42832-019-0017-7
  10. Campos, V. L., Valenzuela, C., Yarza, P., Kämpfer, P., Vidal, R., Zaror, C., Mondaca, M.-A., Lopez-Lopez, A., & Rosselló-Móra, R. (2010). Pseudomonas arsenicoxydans sp. nov., an arsenite-oxidizing strain isolated from the Atacama desert. Systematic and Applied Microbiology, 33(4), 193–197. https://doi.org/10.1016/j.syapm.2010.02.007
  11. Carrión, O., Miñana-Galbis, D., Montes, M. J., & Mercadé, E. (2011). Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. International Journal of Systematic and Evolutionary Microbiology, 61(10), 2401–2405. https://doi.org/10.1099/ijs.0.024919-0
  12. Cid, F. P., Inostroza, N. G., Graether, S. P., Bravo, L. A., & Jorquera, M. A. (2017). Bacterial community structures and ice recrystallization inhibition activity of bacteria isolated from the phyllosphere of the Antarctic vascular plant Deschampsia antarctica. Polar Biology, 40(6), 1319–1331. https://doi.org/10.1007/s00300-016-2036-5
  13. Cid, F. P., Maruyama, F., Murase, K., Graether, S. P., Larama, G., Bravo, L. A., & Jorquera, M. A. (2018). Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere. Extremophiles, 22(3), 537–552. https://doi.org/10.1007/s00792-018-1015-x
  14. Correa, T., & Abreu, F. (2020). Antarctic microorganisms as sources of biotechnological products. In R. Salwan, V. Sharma (Eds.), Physiological and Biotechnological Aspects of Extremophiles (pp. 269–284). Academic Press.
  15. Fabri-Jr, R., Krause, M., Dalfior, B. M., Salles, R. C., de Freitas, A. C., da Silva, H. E., Licinio, M. V. V. J., Brandão, G. P., & Carneiro, M. T. W. D. (2018). Trace elements in soil, lichens, and mosses from Fildes Peninsula, Antarctica: spatial distribution and possible origins. Environmental Earth Sciences, 77(4), 124. https://doi.org/10.1007/s12665-018-7298-5
  16. Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30(8), 1749–1758. https://doi.org/10.1016/0043-1354(95)00323-1
  17. Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 963401. https://doi.org/10.6064/2012/963401
  18. Green, M. R., & Sambrook, J. (2012). Molecular Cloning: Laboratory Manual (4th ed.). Cold Spring Harbor Laboratory Press.
  19. Higuera-Llantén, S., Vásquez-Ponce, F., Núñez-Gallegos, M., Pavlov, M. S., Marshall, S., & Olivares-Pacheco, J. (2018). Phenotypic and genotypic characterization of a novel multiantibiotic-resistant, alginate hyperproducing strain of Pseudomonas mandelii isolated in Antarctica. Polar Biology, 41(3), 469–480. https://doi.org/10.1007/s00300-017-2206-0
  20. Hudz’, S. P., Hnatush, S. O., Yavorska, H. V., Bilinska, I. S., & Borsukevych, B. M. (2014). Praktykum z mikrobiolohii [Guidebook on microbiology]. Vyd. tsentr LNU imeni Ivana Franka, Lviv. (in Ukrainian)
  21. Hwang, C. Y., Zhang, G. I., Kang, S. H., Kim, H. J., & Cho, B. C. (2009). Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. International Journal of Systematic and Evolutionary Microbiology, 59(12), 3019–3024. https://doi.org/10.1099/ijs.0.008102-0
  22. Jukes, T. H., & Cantor, C. R. (1969). Evolution of Protein Molecules. In H.N. Munro (Ed.), Mammalian Protein Metabolism (Vol. 3, pp. 21–132). Academic Press.
  23. Kjeldgaard, B., Listian, S. A., Ramaswamhi, V., Richter, A., Kiesewalter, H. T., & Kovács, Á. T. (2019). Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm, 1, 100007. https://doi.org/10.1016/j.bioflm.2019.100007
  24. Komesli, S., Akbulut, S., Arslan, N. P., Adiguzel, A., & Taskin, M. (2020). Waste frying oil hydrolysis and lipase production by cold-adapted Pseudomonas yamanorum LP2 under non-sterile culture conditions. Environmental Technology, 42(20), 3245–3253. https://doi.org/10.1080/09593330.2020.1745297
  25. Kosina, M., Barták, M., Mašlaňová, I., Pascutti, A. V., Šedo, O., Lexa, M., & Sedláček, I. (2013). Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Current Microbiology, 67(6), 637–646. https://doi.org/10.1007/s00284-013-0406-6
  26. Kosina, M., Švec, P., Černohlávková, J., Barták, M., Snopková, K., De Vos, P., & Sedláček, I. (2016). Description of Pseudomonas gregormendelii sp. nov., a novel psychrotrophic bacterium from James Ross Island, Antarctica. Current Microbiology, 73(1), 84–90. https://doi.org/10.1007/s00284-016-1029-5
  27. Kour, D., Rana, K. L., Kaur, T., Singh, B., Chauhan, V. S., Kumar, A., Rastegari, A. A., Yadav, N., Yadav, A.N., & Gupta, V. K. (2019). Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In G. Molino, V. Gupta, B. Singh, N. Gathergood (Eds.), Bioprocessing for Biomolecules Production (pp. 321–372). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119434436.ch16
  28. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  29. Lee, J., Cho, Y. J., Yang, J. Y., Jung, Y.-J., Hong, S. G., & Kim, O.-S. (2017). Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica. Journal of Biotechnology, 259, 15–18. https://doi.org/10.1016/j.jbiotec.2017.08.013
  30. Liu, K., Hou, S., Wu, S., Zhang, W., Zou, X., Yu, J., Song, J., Sun, X., Huang, R., Pang, H., & Wang, J. (2021). Assessment of heavy metal contamination in the atmospheric deposition during 1950–2016 AD from a snow pit at Dome A, East Antarctica. Environmental Pollution, 268(B), 115848. https://doi.org/10.1016/j.envpol.2020.115848
  31. Lo Giudice, A., Michaud, L., De Pascale, D., De Domenico, M., Di Prisco, G., Fani, R., & Bruni, V. (2006). Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea). Journal of Applied Microbiology, 101(5), 1039–1048. https://sfamjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2006.03006.x
  32. Loperena, L., Soria, V., Varela, H., Lupo, S., Bergalli, A., Guigou, M., Pellegrino, A., Bernardo, A., Calviño, A., Rivas, F., & Batista, S. (2012). Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World Journal of Microbiology and Biotechnology, 28(5), 2249–2256. https://doi.org/10.1007/s11274-012-1032-3
  33. López, N. I., Pettinari, M. J., Stackebrandt, E., Tribelli, P. M., Põtter, M., Steinbüchel, A., & Méndez, B. S. (2009). Pseudomonas extremaustralis sp. nov., a Poly (3-hydroxybutyrate) producer isolated from an Antarctic environment. Current Microbiology, 59(5), 514–519. https://doi.org/10.1007/s00284-009-9469-9
  34. Mancuso Nichols, C. A., Garon, S., Bowman, J. P., Raguénès, G., & Guezennec, J. (2004). Production of exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology, 96(5), 1057–1066. https://doi.org/10.1111/j.1365-2672.2004.02216.x
  35. Ministry of Health of Ukraine. (2019). Hygienic requirements for drinking water intended for human consumption (State sanitary norms and rules 2.2.4-171-10). Retrived August 27, 2021 from https://dbn.co.ua/load/normativy/sanpin/dsanpin_2_2_4_171_10_gigienichni_vimogi_do_vodi_pitnoji_priznachenoji_dlja_spozhivannja_ljudinoju/25-1-0-1180#load
  36. Morrison, C. K., Novinscak, A., Gadkar, V. J., Joly, D. L., & Filion, M. (2016). Complete genome sequence of Pseudomonas fluorescens LBUM636, a strain with biocontrol capabilities against late blight of potato. Genome Announcements, 4(3), e00446-16. https://doi.org/10.1128/genomeA.00446-16
  37. Mozejko-Ciesielska, J., Szacherska, K., & Marciniak, P. (2019). Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates. Journal of Polymers and the Environment, 27(6), 1151–1166. https://doi.org/10.1007/s10924-019-01422-1
  38. Muthu, M., Wu, H.-F., Gopal, J., Sivanesan, I., & Chun, S. (2017). Exploiting microbial polysaccharides for biosorption of trace elements in aqueous environments—scope for expansion via nanomaterial intervention. Polymers, 9(12), 721. https://doi.org/10.3390/polym9120721
  39. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press.
  40. Orellana-Saez, M., Pacheco, N., Costa, J. I., Mendez, K. N., Miossec, M. J., Meneses, C., Castro-Nallar, E., Marcoleta, A. E., & Poblete-Castro, I. (2019). In-depth genomic and phenotypic characterization of the antarctic psychrotolerant strain Pseudomonas sp. MPC6 reveals unique metabolic features, plasticity, and biotechnological potential. Frontiers in Microbiology, 10, 1154. https://doi.org/10.3389/fmicb.2019.01154
  41. Pan, X., Liu, J., Zhang, D., Chen, X., Li, L., Song, W., & Yang, J. (2010). A comparison of five extraction methods for extracellular polymeric substances (EPS) from biofilm by using threedimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. Water SA, 36(1). https://doi.org/10.4314/wsa.v36i1.50914
  42. Papa, R., Parrilli, E., Sannino, F., Barbato, G., Tutino, M. L., Artini, M., & Selan, L. (2013). Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Research in Microbiology, 164(5), 450–456. https://doi.org/10.1016/j.resmic.2013.01.010
  43. Parnikoza, I. Yu., Miryuta, N. Yu., Maidanyuk, D. N., Loparev, S. A., Korsun, S. G., Budzanivska, I. G., Shevchenko, T. P., Polischuk, V. P., Kunakh, V. A., & Kozeretska, I. A. (2007). Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in the Maritime Antarctica. Polar Science, 1(2–4), 121–128.
  44. Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinov, A., & Kozeretska, I. (2017). Soils of the Argentine islands, Antarctica: diversity and characteristics. Polarforschung, 86(2), 83–96.
  45. Podolich, O., Prekrasna, I., Parnikoza, I., Voznyuk, T., Zubova, G., Zaets, I., Miryuta, N., Myryuta, G., Poronnik, O., Kozeretska, I., Kunakh, V., Pirtilla, A. M., Dykyi, E., & Kozyrovska, N. (2021). First record of the endophytic bacteria of Deschampsia antarctica Ė. Desv. from two distant localities of the maritime Antarctic. Czech Polar Reports, 11(1), 134–153. https://doi.org/10.5817/CPR2021-1-10
  46. Poli, A., Anzelmo, G., & Nicolaus, B. (2010). Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Marine Drugs, 8(6), 1779–1802. https://doi.org/10.3390/md8061779
  47. Qessaoui, R., Bouharroud, R., Furze, J. N., El Aalaoui, M., Akroud, H., Amarraque, A., Van Vaerenbergh, J., Tahzima, R., Mayad, E. H., & Chebli, B. (2019). Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Scientific Reports, 9(1), 12832. https://doi.org/10.1038/s41598-019-49216-8
  48. Reddy, G. S. N., Matsumoto, G. I., Schumann, P., Stackebrandt, E., & Shivaji, S. (2004). Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. International Journal of Systematic and Evolutionary Microbiology, 54(3), 713–719. https://doi.org/10.1099/ijs.0.02827-0
  49. Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology, 17(1), 208–212. https://doi.org/10.1083/jcb.17.1.208
  50. Ribeiro, A. P., Figueira, R. C. L., Martins, C. C., Silva, C. R. A., França, E. J., Bícego, M. C., Mahiques, M. M., & Montone, R. C. (2011). Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 62(1), 192–196. https://doi.org/10.1016/j.marpolbul.2010.10.014
  51. Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., Bezerra, R. M., dos Santos, J. C. S., & Gonçalves, L. R. B. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, 75, 99–120. https://doi.org/10.1016/j.procbio.2018.09.003
  52. Rodríguez-Rojas, F., Tapia, P., Castro-Nallar, E., Undabarrena, A., Muñoz-Díaz, P., Arenas-Salinas, M., Diaz-Vasquez, W., Valdes, J. & Vásquez, C. (2016). Draft genome sequence of a multi-metal resistant bacterium Pseudomonas putida ATH-43 isolated from Greenwich Island, Antarctica. Frontiers in Microbiology, 7, 1777. https://doi.org/10.3389/fmicb.2016.01777
  53. Romaniuk, K., Ciok, A., Decewicz, P., Uhrynowski, W., Budzik, K., Nieckarz, M., Pawlowska, J., Zdanowski, M. K., Bartosik, D., & Dziewit, L. (2018). Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biology, 41(7), 1319–1333. https://doi.org/10.1007/s00300-018-2287-4
  54. Salwan, R., & Sharma, V. (Eds.). (2020). Physiological and Biotechnological Aspects of Extremophiles. Academic Press.
  55. Salwoom, L., Raja Abd Rahman, R. N. Z., Salleh, A. B., Shariff, F. M., Convey, P., Pearce, D., & Mohamad Ali, M. S. (2019). Isolation, characterisation, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island, Antarctica. Molecules, 24(4), 715. https://doi.org/10.3390/molecules24040715
  56. Santo, C. E., Lin, Y., Hao, X., Wei, G., Rensing, C., & Grass, G. (2012). Draft genome sequence of Pseudomonas psychrotolerans L19, isolated from copper alloy coins. Journal of Bacteriology, 194(6), 1623–1624. https://doi.org/10.1128/JB.06786-11
  57. See-Too, W. S., Salazar, S., Ee, R., Convey, P., Chan, K. G., & Peix, Á. (2017). Pseudomonas versuta sp. nov., isolated from Antarctic soil. Systematic and Applied Microbiology, 40(4), 191–198. https://doi.org/10.1016/j.syapm.2017.03.002
  58. Skvortsov, T., Hoering, P., Arkhipova, K., Whitehead, R. C., Boyd, D. R., & Allen, C. C. R. (2018). Draft genome sequences of Pseudomonas putida UV4 and UV4/95, toluene dioxygenase-expressing producers of cis-1,2-dihydrodiols. Genome Announcements, 6(1), e01419-17. https://doi.org/10.1128/genomeA.01419-17
  59. Sone, Y., Mochizuki, Y., Koizawa, K., Nakamura, R., Pan-Hou, H., Itoh, T., & Kiyono, M. (2013). Mercurial-resistance determinants in Pseudomonas strain K-62 plasmid pMR68. AMB Express, 3(1), 41. https://doi.org/10.1186/2191-0855-3-41
  60. Sushma, V. K., Abha, S., & Chander, P. (2012). Isolation and characterization of Bacillus subtilis KC3 for amylolytic activity. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(5), 336–341.
  61. Thompson, J. D., Higgins, D. G.,& Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  62. Tomova, I., Vasileva-Tonkova, E., & Stoilova-Disheva, M. (2014a). Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, East Antarctica. Polish Polar Research, 4, 593–607. https://doi.org/10.2478/popore-2014-0028
  63. Tomova, I., Gladka, G., Tashyrev, A., & Vasileva-Tonkova, E. (2014b). Isolation, identification and hydrolytic enzymes production of aerobic heterotrophic bacteria from two Antarctic islands. International Journal of Environmental Sciences, 4(5), 614–625. https://doi.org/10.6088/ijes.2014040404501
  64. Tropeano, M., Coria, S., Turjanski, A., Cicero, D., Bercovich, A., Mac Cormack, W., & Vazquez, S. (2012). Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production. Polar Research, 31(1), 18507. https://doi.org/10.3402/polar.v31i0.18507
  65. Turner, S., Pryer, K. M., Miao, V. P. W., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46(4), 327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
  66. Vásquez-Ponce, F., Higuera-Llantén, S., Pavlov, M. S., Ramírez-Orellana, R., Marshall, S. H., & Olivares-Pacheco, J. (2017). Alginate overproduction and biofilm formation by psychrotolerant Pseudomonas mandelii depend on temperature in Antarctic marine sediments. Electronic Journal of Biotechnology, 28, 27–34. https://doi.org/10.1016/j.ejbt.2017.05.001
  67. Yarzábal, L. A. (2016). Antarctic psychrophilic microorganisms and biotechnology: history, current trends, applications, and challenges. In S. Castro-Sowinski (Ed.), Microbial models: From environmental to industrial sustainability (pp. 83–118). Springer, Singapore.
  68. Zakaria, N. N., Roslee, A. F. A., Gomez-Fuentes, C., Zulkharnain, A., Abdulrasheed, M., Sabri, S., Ramirez-Moreno, N., Calisto-Ulloa, N., & Ahmad, S. A. (2020). Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Revista Mexicana de Ingeniería Química, 19(3), 1375–1388. https://doi.org/10.24275/rmiq/Bio1072
  69. Zhao, F., Guo, C., Cui, Q., Hao, Q., Xiu, J., Han, S., & Zhang, Y. (2018). Exopolysaccharide production by an indigenous isolate Pseudomonas stutzeri XP1 and its application potential in enhanced oil recovery. Carbohydrate Polymers, 199, 375–381. https://doi.org/10.1016/j.carbpol.2018.07.038