Ukrainian Antarctic journal

No 2 (2021): Ukrainian Antarctic Journal

Physiological and biochemical traits of yeasts from soils of various ecosystems of East Antarctica

E. Gribanova
Belarusian State University, Minsk, 220108, Belarus
V. Miamin
Belarusian State University, Minsk, 220108, Belarus; SNPO "SPC of the National Academy of Sciences of Belarus for Bioresources", Minsk, 220072, Belarus
Published December 31, 2021
  • Antarctica,
  • biosurfactants,
  • enzymatic activities,
  • microorganisms,
  • stress tolerance


The diversity of psychrophilic / psychrotolerant microorganisms from Antarctica is a preferred subject of study by microbiologists, in turn, the communities of endolithic and hypolithic yeast cultures are practically not studied, and the literature on the biotechnological potential of such microorganisms should cover important biomolecules in addition to cold-adapted enzymes. In order to study the characteristics and biopotential of yeast cultures isolated from soil samples of East Antarctica, a number of physiological and biochemical tests were carried out. This article provides a list of the studied morphological characteristics, and also describes the results of the study of enzymatic activities and biochemical properties. In the course of research, it was revealed that Antarctic yeast isolates have a wide range of enzymatic activities when growing on agar media: most isolates were characterized by the presence of lipolytic, amylolytic, DNase, urease activities and the production of esters; a much smaller number of isolates were capable of manifesting proteolytic, cellulolytic and pectolytic activities, the release of organic acids and the formation of starch-like compounds. The study of tolerance to stress showed the presence of resistance of the studied cultures to the effects of ultraviolet radiation with a wavelength of 254 nm and low concentrations of copper sulfate in the environment. A qualitative assessment of the level of glycogen in yeast cells by staining with Lugol's solution showed that one culture is capable of accumulating glycogen in significant amounts. Additionally, the ability of yeast cells to accumulate lipids with increasing age of cultures was shown. The destruction of the surface of the mineral motor oil by the culture broth made it possible to identify yeast isolates with high destructive activity. This experience allows us to consider Antarctic yeast cultures as promising producers of biologically active compounds. The variety and spectrum of physiological activities of the investigated isolates allows us to consider them as promising producers of biological compounds for use in medicine and biotechnology.


  1. Alcaíno, J., Cifuentes, V., & Baeza, M. (2015). Physiological adaptations of yeasts living in cold environments and their potential applications. World Journal of Microbiology and Biotechnology, 31(10), 1467–1473.
  2. Babyeva, I. P., & Golubev, V. I. (1979). Metody vydeleniya i identifikacii drozhzhej [Methods for the isolation and identification of yeasts]. Pishhevaya promyshlennost.
  3. Bagaeva, T. V., Ionova, N. E`., & Nadeeva, G. V. (2013). Mikrobiologicheskaya remediaciya prirodnykh sistem ot tyazhelykh metalov [Microbiogical remediation of natural ecosystems from heavy metals]. Kazanskiy universitet.
  4. Barahona, S., Yuivar, Y., Socias, G., Alcaíno, J., Cifuentes, V., & Baeza, M. (2016). Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles, 20(4), 479–491.
  5. Bueno, J. L., Santos, P. A. D., da Silva, R. R., Moguel, I. S., Pessoa Jr, A., Vianna, M. V., Pagnocca, F. C., Sette, L. D., & Gurpilhares, D. B. (2019). Biosurfactant production by yeasts from different types of soil of the South Shetland Islands (Maritime Antarctica). Journal of Applied Microbiology, 126(5), 1402–1413.
  6. Byrtusová, D., Shapaval, V., Holub, J., Šimanský, S., Rapta, M., Szotkowski, M., Kohler, A., & Márová, I. (2020). Revealing the potential of lipid and β-Glucans coproduction in Basidiomycetes yeast. Microorganisms, 8(7), 1034.
  7. Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8(2), 129–138.
  8. Connell, L. B., Redman, R., Rodriguez, R., Barrett, A., Iszard, M., & Fonseca, A. (2010). Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. International Journal of Systematic and Evolutionary Microbiology, 60(6), 1466–1472.
  9. D’Amico, S., Collins, T., Marx, J.-C., Feller, G., Gerday, C., & Gerday, C. (2006). Psychrophilic microorganisms: challenges for life. EMBO reports, 7(4), 385–389.
  10. Darling, C. A., & Siple, P. A. (1941). Bacteria of Antarctica. Journal of Bacteriology, 42(1), 83–98.
  11. De Pascale, D., De Santi, C., Fu, J., & Landfald, B. (2012). The microbial diversity of Polar environments is a fertile ground for bioprospecting. Marine Genomics, 8, 15–22.
  12. Di Menna, M. E. (1960). Yeasts from Antarctica. Journal of General Microbiology, 23(2), 295–300.
  13. Di Menna, M. E. (1966). Yeasts in Antarctic soils. Antonie van Leeuwenhoek, 32(1), 29–38.
  14. Fedorova, V. V., Petukhova, N. I., Khalimova, L. X., & Zorin, V. V. (2010). Isledovanie usloviy sinteza biosurfaktantov mikroorganizmami [A study of conditions in which microbes produce biosurfactants]. Bashkir Chemical Journal, 17(5).
  15. Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie, P., Collins, T., D’Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T., Meuwis, M.-A., & Feller, G. (2000). Cold-adapted enzymes: from fundamentals to biotechnology. Trends in biotechnology, 18(3), 103–107.
  16. Gounot, A. M. (1986). Psychrophilic and psychrotrophic microorganisms. Experientia, 42(11), 1192–1197.
  17. Gribanova, E. A., & Miamin, V. E. (2019, November 27–29). Kharakteristika drozhzhej, vydelennykh iz razlichnykh ekosistem Vostochnoj Antarktidy [Description of yeasts isolated from various ecosystems of East Antarctica]. Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii Biotekhnologii mikroorganizmov (pp. 321–325). Minsk, Belarus.
  18. Gribanova, E. A., & Miamin, V. E. (2021a). Fiziologo-bioximicheskaya xarakteristika drozhzhej, vydelennykh iz razlichnykh ekosistem Vostochnoy Antarktidy [Physiologo-biochemical characteristics of yeasts isolated from various ecosystems of the East Antarctica]. In Materialy` Mezhdunarodnogo molodezhnogo nauchnogo foruma "Lomonosov-2021". MAKS Press.
  19. Gribanova, E. A., & Miamin, V. E. (2021b, May 11–13). Physiological and biochemical characteristics of yeasts isolated from different ecosystems of Eastern Antarctida [Conference Abstract]. X International Antarctic Conference Kyiv, Ukraine, 105–106.
  20. Gugliandolo, C., Michaud, L., Giudice, A. L., Lentini, V., Rochera, C., Camacho, A., & Maugeri, T. L. (2016). Prokaryotic community in lacustrine sediments of Byers Peninsula (Livingston Island, Maritime Antarctica). Microbial Ecology, 71(2), 387–400.
  21. Karpov, V. A. (1985). Metod opredeleniya DNK-aznoj aktivnosti [A method to determine the DNase activity]. Veterinariya, 11, 79–80.
  22. Kurzanov, A. N. (1975). Metod opredeleniya lipoliticheskoj aktivnosti biologicheskikh zhidkostey [A method to determine the lipolytic activity of biological liquids]. Laboratornoe delo, 12, 746–747.
  23. Lysak, V. V., & Zheldakova, R. A. (2002). Mikrobiologiya: metodicheskie rekomendacii k laboratornym zanyatiyam, kontrol samostoyatelnoy raboty studentov [Microbiology: methodical recommendations for laboratory assignments and control of the students’ own work]. BSU.
  24. Roberts, G. D., Horstmeier, C. D., Land, G. A., & Foxworth, J. H. (1978). Rapid urea broth test for yeasts. Journal of Clinical Microbiology, 7(6), 584–588.
  25. Robinson, C. H. (2001). Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 151(2), 341–353.
  26. Rukhlyadeva, A. P., & Korchagina, G. T. (1973). Opredelenie pektoliticheskoy aktivnosti interferometricheskim metodom [Determination of the pectolytic activity by interferometry]. Prikladnaya Biokhimiya i Mikrobiologiya, 6, 922–927.
  27. Sampaio, J. P. (1999). Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Canadian Journal of Microbiology, 45(6), 491–512.
  28. Satyanarayana, T., & Kunze, G. (Eds.). (2009). Yeast biotechnology: diversity and applications. Springer, Dordrecht.
  29. Turkiewicz, M., Pazgier, M., Kalinowska, H., & Bielecki, S. (2003). A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles, 7(6), 435–442.
  30. Villarreal, P., Carrasco, M., Barahona, S., Alcaíno, J., Cifuentes, V., & Baeza, M. (2016). Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Current Microbiology, 72(1), 94–101.
  31. Vishniac, H. S., & Hempfling, W. P. (1979). Evidence of an indigenous microbiota (yeast) in the dry valleys of Antarctica. Journal of General Microbiology, 112(2), 301–314.
  32. Zenova, G. M., Stepanov, A. L., Lihacheva, A. A., & Manucharova, N. A. (2002). Praktikum po biologii pochv [Soil biology handbook]. Izdatelstvo MGU.
  33. Zubov, D. V., & Tolchenov, A. A. (2012). Ekspress-metodika kontrolya aktivnosti fermentnogo kompleksa [Express method of monitoring the activity of an enzyme complex]. Vestnik Saratovskogo gosudarstvennogo texnicheskogo universiteta, 1(2), 64.