Ukrainian Antarctic journal

Vol 20 No 1(24) (2022): Ukrainian Antarctic Journal
Articles

Arctic fjord during warming: Planktonic point of view

J. Wiktor
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712, Poland
M. Głuchowska
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712, Poland
K. Błachowiak-Samołyk
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712, Poland
K. Piwosz
Sea Fisheries Institute in Gdynia, Gdynia, 81-332, Poland
S. Kwaśniewski
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712, Poland
K. Jankowska
Faculty of Environmental Engineering, Technical University, Gdańsk, 80-233, Poland
K. Dmoch
Oithona Katarzyna Dmoch, Gdańsk, 80-328, Poland
J. M. Węsławski
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712, Poland
Published August 4, 2022
Keywords
  • Arctic fjord,
  • bacteria,
  • climate change,
  • Hornsund,
  • protists,
  • zooplankton
  • ...More
    Less

Abstract

The climate affects aquatic ecosystems worldwide, yet the most dramatic impact has been observed in Polar Regions. The presented study aimed to test the hypothesis that changes in biodiversity are linked to changes in the food web functioning under different temperature conditions, with large species dominant in cold waters and smaller species dominant in warmer waters. Two sites with contrasting hydrology were surveyed in summer 2005 in Hornsund (west Spitsbergen). The first site was located close to the fjord entrance and was strongly influenced by the Atlantic waters (WARM). The second was located deep inside the fjord, where the water is fresher and colder due to glacier meltwater runoff (COLD). Temperature, salinity and photosynthetic active radiation were measured, nutrient concentrations and chlorophyll a were analyzed. Plankton biota, including different fractions of zooplankton, phytoplankton and bacteria was collected and enumerated. The temperature differences were the most pronounced out of the abiotic parameters measured. In particular, the COLD site was characterized by lower water temperature and higher turbidity due to the influence of meltwater. Significant differences in the composition and the quantitative ratios of plankton biota were noted, with the most dramatic variation in the number of microplankton taxa and their biomass. The overall plankton biomass at the WARM site (91 mg C ⋅ m–3) was higher than that at the COLD site (71 mg C ⋅ m–3), as well as the primary production rates. Microplanktonic assemblages at the WARM site included twice as many taxa. The protists constituted more than half of the plankton biomass at the WARM site (53.2%), whereas their share at the COLD site was slightly higher (63.6%). The nanoplankton fraction was numerically dominant among the protists, whereas copepods were the main component of the zooplankton biomass. The differences in planktonic communities’ compositions observed between the two sites might have arisen due to the influence of turbid meltwater runoff, which eliminates larger, strictly autotrophic and decreases primary production.

References

  1. Arar, E. J., & Collins, G. B. (1997). Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency. http://flrules.elaws.us/gateway/refpdf/62/D62/Ref-02922/m445_0[1].pdf
  2. Arrigo, K. R., van Dijken, G., & Pabi, S. (2008). Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters, 35(19), L19603. https://doi.org/10.1029/2008gl035028
  3. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., & Thingstad, F. (1983). The ecological role of watercolumn microbes in the sea. Marine Ecology Progress Series, 10(3), 257—263. http://www.jstor.org/stable/24814647
  4. Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S., & Reid, P. C. (2003). Plankton effect on cod recruitment in the North Sea. Nature, 426(6967), 661—664. https://doi.org/10.1038/nature02164
  5. Blachowiak-Samolyk, K., Kwasniewski, S., Dmoch, K., Hop, H., & Falk-Petersen, S. (2007). Trophic structure of zooplankton in the Fram Strait in spring and autumn 2003. DeepSea Research. Part II, Topical Studies in Oceanography, 54(23—26), 2716—2728. https://doi.org/10.1016/j.dsr2.2007.08.004
  6. Blachowiak-Samolyk, K., Kwasniewski, S., Hop, H., & Falk-Petersen, S. (2008). Magnitude of mesozooplankton variability: a case study from the Marginal Ice Zone of the Barents Sea in spring. Journal of Plankton Research, 30(3), 311–323. https://doi.org/10.1093/plankt/fbn002
  7. Carmack, E., & Wassmann, P. (2006). Food webs and physical—biological coupling on pan-Arctic shelves: Unifying concepts and comprehensive perspectives. Progress in Oceanography, 71(2—4), 446—477. https://doi.org/10.1016/j.pocean.2006.10.004
  8. Carmack, E., Barber, D., Christensen, J., Macdonald, R., Rudels, B., & Sakshaug, E. (2006). Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Progress in Oceanography, 71(2—4), 145—181. https://doi.org/10.1016/j.pocean.2006.10.005
  9. Dowdeswell, J. A., & Hagen, J. O. (2004). Arctic ice caps and glaciers. In J. L. Bamber, & A. J. Payne (Eds.), Mass balance of the Cryosphere (pp. 527—558). Cambridge University Press. https://doi.org/10.1017/CBO9780511535659
  10. Eilertsen, H. C., Taasen, J. P., & Weslawski, J. M. (1989). Phytoplankton studies in the fjords of West Spitzbergen: physical environment and production in spring and summer. Journal of Plankton Research, 11(6), 1245—1260. https://doi.org/10.1093/plankt/11.6.1245
  11. Falk-Petersen, S., Pedersen, G., Kwasniewski, S., Hegseth, E. N., & Hop, H. (1999). Spatial distribution and life-cycle timing of zooplankton in the marginal ice zone of the Barents Sea during the summer melt season in 1995. Journal of Plankton Research, 21(7), 1249—1264. https://doi.org/10.1093/plankt/21.7.1249
  12. Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E., & Falkowski, P. G. (2005). Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8927—8932. https://doi.org/10.1073/pnas.0409907102
  13. Gordeev, V. V. (2006). Fluvial sediment flux to the Arctic Ocean. Geomorphology, 80(1), 94—104. https://doi.org/10.1016/j.geomorph.2005.09.008
  14. Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Methods of seawater analysis (2nd ed.). Verlag Chemie. https://www.worldcat.org/title/methods-of-seawater-analysis/oclc/761504115
  15. Graversen, R. G., Mauritsen, T., Tjernström, M., Källén, E., & Svensson, G. (2008). Vertical structure of recent Arctic warming. Nature, 451(7174), 53—56. https://doi.org/10.1038/nature06502
  16. Hanssen, H. (1997). Mesozooplankton of the Laptev Sea and the adjacent eastern Nansen Basin: distribution and community structure in late summer. Reports on Polar Research, 229, 1—131.
  17. Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., & Huntley, M. (Eds.). (2000). ICES Zooplankton Methodology Manual. Academic Press. https://doi.org/10.1016/B978-0-12-327645-2.X5000-2
  18. Hirche, H.-J. (1991). Distribution of dominant calanoid copepod species in the Greenland sea during late fall. Polar Biology, 11(6), 351—362. https://doi.org/10.1007/BF00239687
  19. Intergovernmental Oceanographic Commission. (1983). Chemical methods for use in marine environment monitoring. UNESCO. https://doi.org/10.25607/OBP-1419
  20. Jankowska, K., Włodarska-Kowalczuk, M., & Wieczorek, P. (2005). Abundance and biomass of bacteria in two Arctic glacial fjords. Polish Polar Research, 26(1), 77—84. https://journals.pan.pl/dlibra/publication/126781/edition/110629/content
  21. Karnovsky, N. J., Kwasniewski, S., Weslawski, J. M., Walkusz, W., & Beszczynska-Möller, A. (2003). Foraging behavior of little auks in a heterogeneous environment. Marine Ecology Progress Series, 253, 289—303. https://doi.org/10.3354/meps253289
  22. Keck, A., Wiktor, J., Hapter, R., & Nilsen, R. (1999). Phytoplankton assemblages related to physical gradients in an arctic, glacier-fed fjord in summer. ICES Journal of Marine Science: Journal Du Conseil, 56, Supplement A, 203—214.
  23. Kosobokova, K. N., Hanssen, H., Hirche, H.-J., & Knickme ier, K. (1997). Composition and distribution of zooplankton in the Laptev Sea and adjacent Nansen Basin during summer, 1993. Polar Biology, 19(1), 63—76. https://doi.org/10.1007/s003000050216
  24. Koszteyn, J., & Kwaśniewski, S. (1989). Comparison of fjord and shelf mesozooplankton communities of the southern Spitsbergen region. Rapports et Procès-Verbaux Des Réunions Du Conseil International Pour l’Exploration de La Mer, 188, 164—169. https://www.ices.dk/sites/pub/Publication%20Reports/Marine%20Science%20Symposia/Phase%202/Rapport%20et%20ProcesVerbaux%20des%20Reunions%20-%20Volume%20188%20-%201989%20-%20Partie%2043%20de%2071.pdf
  25. Koziorowska, K., Kuliński, K., & Pempkowiak, J. (2016). Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition. Continental Shelf Research, 113, 38—46. https://doi.org/10.1016/j.csr.2015.11.010
  26. Kwasniewski, S., Hop, H., Falk-Petersen, S., & Pedersen, G. (2003). Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. Journal of Plankton Research, 25(1), 1—20. https://doi.org/10.1093/plankt/25.1.1
  27. López-Urrutia, A., San Martin, E., Harris, R. P., & Irigoien, X. (2006). Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8739—8744. https://doi.org/10.1073/pnas.0601137103
  28. Macdonald, R. W., Harner, T., & Fyfe, J. (2005). Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment, 342(1—3), 5—86. https://doi.org/10.1016/j.scitotenv.2004.12.059
  29. Menden-Deuer, S., & Lessard, E. J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 45(3), 569–579. https://doi.org/10.4319/lo.2000.45.3.0569
  30. Mumm, N. (1991). Zur sommerlichen Verteilung des Mesozooplanktons im Nansen-Becken, Nordpolarmeer (On the summerly distribution of mesozooplankton in the Nansen Basin, Arctic Ocean). Berichte zur Polarforschung (Reports on Polar Research), 92. https://epic.awi.de/id/eprint/26269/1/BerPolarforsch199192.pdf
  31. Nielsen, G. Æ., & Bresta, A.-M. (1984). Guidelines for the measurement of phytoplankton primary production (2nd ed.). Baltic Marine Biologists.
  32. Norland, S. (1993). Section biomass the relationship between biomass and volume of bacteria. In F. P. Kemp, B. F. Sherr, E. B. Sherr, & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 303—307). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9780203752746-36/section-biomassthe-relationship-biomass-volume-bacteriasvein-norland
  33. Not, F., Massana, R., Latasa, M., Marie, D., Colson, C., Eikrem, W., Pedrós-Alió, C., Vaulot, D., & Simon, N. (2005). Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnology and Oceanography, 50(5), 1677—1686. https://doi.org/10.4319/lo.2005.50.5.1677
  34. Owrid, G., Socal, G., Civitarese, G., Luchetta, A., Wiktor, J., Nöthig, E.-M., Andreassen, I., Schauer, U., & Strass, V. (2000). Spatial variability of phytoplankton, nutrients and new production estimates in the waters around Svalbard. Polar Research, 19(2), 155—171. https://doi.org/10.3402/polar.v19i2.6542
  35. Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J., & Comiso, J. C. (1999). Arctic sea ice extents, areas, and trends, 1978—1996. Journal of Geophysical Research. Oceans, 104(C9), 20837—20856. https://doi.org/10.1029/1999jc900082
  36. Piwosz, K., Walkusz, W., Hapter, R., Wieczorek, P., Hop, H., & Wiktor, J. (2009). Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biology, 32(4), 549—559. https://doi.org/10.1007/s00300-008-0549-2
  37. Pomeroy, L. R. (1974). The Ocean’s Food Web, A Changing Paradigm. Bio Science, 24(9), 499—504. https://doi.org/10.2307/1296885
  38. Porter, K. G., & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25(5), 943—948. https://doi.org/10.4319/lo.1980.25.5.0943
  39. Rat’kova, T. N., & Wassmann, P. (2002). Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea. Journal of Marine Systems, 38(1—2), 47—75. https://doi.org/10.1016/S0924-7963(02)00169-0
  40. Richardson, A. J., & Schoeman, D. S. (2004). Climate impact on plankton ecosystems in the Northeast Atlantic. Science, 305(5690), 1609—1612. https://doi.org/10.1126/science.1100958
  41. Richter, C. (1994). Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea. Berichte zur Polarforschung (Reports on Polar Research), 154. https://epic.awi.de/id/eprint/26332/1/BerPolarforsch1994154.pdf
  42. Sherr, E. B., Sherr, B. F., & Fessenden, L. (1997). Heterotrophic protists in the Central Arctic Ocean. Deep-Sea Research. Part II, Topical Studies in Oceanography, 44(8), 1665—1682. https://doi.org/10.1016/S09670645(97)00050-7
  43. Sherr, E. B., Sherr, B. F., Wheeler, P. A., & Thompson, K. (2003). Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(5), 557—571. https://doi.org/10.1016/S0967-0637(03)00031-1
  44. Strass, V. H., & Nöthig, E.-M. (1996). Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biology, 16(6), 409—422. https://doi.org/10.1007/BF02390423
  45. Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis. Bulletin 167 (2nd ed.). Fisheries research board of Canada. https://epic.awi.de/id/eprint/39262/1/Strickland-Parsons_1972.pdf
  46. Svendsen, H., & Thompson, R. O. R. Y. (1978). Wind-Driven Circulation in a Fjord. Journal of Physical Oceanography, 8(4), 703—712. https://doi.org/10.1175/1520-0485(1978)008<0703:WDCIAF>2.0.CO;2
  47. Swerpel, S. (1985). The Hornsund fiord: water masses. Polish Polar Research, 6(4), 475—496. https://journals.pan.pl/Content/111444/PDF/1985_4_475-496.pdf
  48. Tande, K. S. (1991). Calanus in North Norwegian fjords and in the Barents sea. Polar Research, 10(2), 389—408. https://doi.org/10.3402/polar.v10i2.6754
  49. Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen. Internationale Vereinigung Fuer Theoretische Und Angewandte Limnologie, 9, 1—38.
  50. Uye, S.-I. (1982). Length-weight relationships of important zooplankton from the Inland Sea of Japan. Journal of the Oceanographical Society of Japan, 38(3), 149—158. https://doi.org/10.1007/BF02110286
  51. Walczowski, W., & Piechura, J. (2007). Pathways of the Green land Sea warming. Geophysical Research Letters, 34(10), L10608. https://doi.org/10.1029/2007gl029974
  52. Walkusz, W., Kwaśniewski, S., Dmoch, K., & Beszczyńska-Möller, A. (2007). A contribution to the knowledge of Arctic zooplankton diurnal variability (Kongsfjorden, Svalbard). Polish Polar Research, 28(1), 43—56. https://journals.pan.pl/Content/110593/PDF/PPR28-043.pdf
  53. Walsh, J. E., Overland, J. E., Groisman, P. Y., & Rudolf, B. (2011). Ongoing climate change in the Arctic. AMBIO, 40(1), 6–16. https://doi.org/10.1007/s13280-011-0211-z
  54. Wang, G., Guo, C., Luo, W., Cai, M., & He, J. (2009). The distribution of picoplankton and nanoplankton in Kongsfjorden, Svalbard during late summer 2006. Polar Biology, 32(8), 1233—1238. https://doi.org/10.1007/s00300-009-0666-6
  55. Węsławski, J. M., Jankowski, A., Kwaśniewski, S., Swerpel, S., & Ryg, M. (1991). Summer hydrology and zooplankton in two Svalbard fiords. Polish Polar Research, 12(3), 445–460. https://journals.pan.pl/dlibra/docmetadata?showContent=true&id=111144
  56. Weslawski, J. M., Koszteyn, J., Zajaczkowski, M., & Wiktor, J. (1995). Fresh water in Svalbard fjord ecosystems. In H. R. Skjodal, C. Hopkins, K. E. Erikstad, & H. P. Leinaas, Ecology of Fjords and Coastal Waters (pp. 229—242). Elsevier.
  57. Węsławski, J. M., Koszteyn, J., Kwaśniewski, S., Stempniewicz, L., & Malinga, M. (1999). Summer food resources of the little auk, Alle alle (L.) in the European Arctic seas. Polish Polar Research, 20(4), 387—403. https://kezk.bio.ug.edu.pl/admin/upload/files/ls_29.pdf
  58. Wiktor, J. (1999). Early spring microplankton development under fast ice covered fjords of Svalbard, Arctic. Oceanologia, 41(1), 51—72. http://www.iopan.gda.pl/oceanologia/411wikto.pdf
  59. Wiktor, J., & Wojciechowska, K. (2005). Differences in taxonomic composition of summer phytoplankton in two fjords of West Spitsbergen, Svalbard. Polish Polar Research, 26(4), 259—268. https://www.czasopisma.pan.pl/dlibra/publication/126794/edition/110639/content/differences-in-taxonomiccomposition-of-summer-phytoplankton-in-two-fjords-ofwest-spitsbergen-svalbard-wiktor-jozef-wojciechowskakatarzyna
  60. Zajaczkowska, B., & Zajaczkowski, M. (1989). Quantitative microbiological survey in Hornsund, SW Spitsbergen. Reconaissance study in summer 1985. Bulletin of the Polish Academy of Sciences. Biological Sciences, 37(4–6), 79—84. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-6ed6ebee-437b-4707-b143-edf21d1b15ea
  61. Zhang, T., Heginbottom, J. A., Barry, R. G., & Brown, J. (2000). Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geography, 24(2), 126—131. https://doi.org/10.1080/10889370009377692