- data source,
- MERRA-2,
- method,
- ozone,
- reanalysis
- visualization ...More
Copyright (c) 2022 Ukrainian Antarctic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
We describe the methods and data sources for investigating the stratospheric ozone and planetary waves in the atmosphere in the framework of research provided by our international team. Selected ground-based and satellite instruments for ozone measurements and related reanalyses are described. Examples of data and analysis tools are shown. The technique of planetary wave spectral analysis under conditions of dynamic changes during sudden stratospheric warmings is presented. A brief description of the main results, obtained with the participation of the authors, using combined methods of analysis are considered. We describe procedures for the investigation of a long-term eastward displacement of the zonal ozone minimum over the Antarctic in the spring months, analysis of the spatial and temporal characteristics of the teleconnection between the tropical thermal source and the Antarctic stratosphere, and the creation of the predictive index used for the forecast of possible ozone hole anomalous development in spring months. Examples of application of analysis methods to retrieve the changes in the zonal asymmetry of the Arctic stratopause and features of the annual ozone cycle in connection with zonal ozone asymmetry are discussed.
References
- Agosta, E. A., & Canziani, P. O. (2010). Interannual variations in the zonal asymmetry of the subpolar latitudes total ozone column during the austral spring. Geoacta, 35(1), 1–16.
- Allen, D. R., Bevilacqua, R. M., Nedoluha, G. E., Randall, C. E., & Manney, G. L. (2003). Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophysical Research Letters, 30(12), 1599. https://doi.org/10.1029/2003GL017117
- Angot, G., Keckhut, P., Hauchecorne, A., & Claud, C. (2012). Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N). Journal of Geophysical Research: Atmospheres, 117(D21), D21102. https://doi.org/10.1029/2012JD017631
- Antón, M., Koukouli, M. E., Kroon, M., McPeters, R. D., Labow, G. J., Balis, D., & Serrano, A. (2010). Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. Journal of Geophysical Research: Atmospheres, 115(D19), D19305. https://doi.org/10.1029/2010JD014178
- Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 294(5542), 581–584. https://doi.org/10.1126/science.1063315
- Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., & Pedatella, N. M. (2021). Sudden stratospheric warmings. Reviews of Geophysics, 59(1), e2020RG000708. https://doi.org/10.1029/2020RG000708
- Bramstedt, K., Gleason, J., Loyola, D., Thomas, W., Bracher, A., Weber, M., & Burrows, J. P. (2003). Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000. Atmospheric Chemistry and Physics, 3(5), 1409–1419. https://doi.org/10.5194/acp-3-1409-2003
- Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., & Perner, D. (1999). The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results. Journal of the Atmospheric Sciences, 56(2), 151–175. https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
- Butler, A. H., & Gerber, E. P. (2018). Optimizing the definition of a sudden stratospheric warming. Journal of Climate, 31(6), 2337–2344. https://doi.org/10.1175/JCLI-D-17-0648.1
- Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63–76. https://doi.org/10.5194/essd-9-63-2017
- Butler, A. H., Lawrence, Z. D., Lee, S. H., Lillo, S. P., & Long, C. S. (2020). Differences between the 2018 and 2019 stratospheric polar vortex split events. Quarterly Journal of the Royal Meteorological Society, 146 (732), 3503–3521. https://doi.org/10.1002/qj.3858
- Chandran, A., & Collins, R. L. (2014). Stratospheric sudden warming effects on winds and temperature in the middle atmosphere at middle and low latitudes: a study using WACCM. Annales Geophysicae, 32(7), 859–874. https://doi.org/10.5194/angeo-32-859-2014
- Chandran, A., Collins, R. L., Garcia, R. R., & Marsh, D. R. (2011). A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model. Geophysical Research Letters, 38(8), L08804. https://doi.org/10.1029/2010GL046566
- Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L., Yue, J., & de la Torre, L. (2013). A climatology of elevated stratopause events in the whole atmosphere community climate model. Journal of Geophysical Research: Atmospheres, 118(3), 1234–1246. https://doi.org/10.1002/jgrd.50123
- Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. Journal of Climate, 20 (3), 449–469. https://doi.org/10.1175/JCLI3996.1
- Choi, H., Kim, J.-H., Kim, B.-M., & Kim, S.-J. (2021). Observational evidence of distinguishable weather patterns for three types of sudden stratospheric warming during northern winter. Frontiers in Earth Science, 9, 625868. https://doi.org/10.3389/feart.2021.625868
- Chubachi, S. (1984). Preliminary result of ozone observations at Syowa station from February 1982 to January 1983. Memoirs of National Institute of Polar Research Japan, Special issue, 34, 13–19.
- Constantin, A. (2016). Fourier Analysis (London Mathematical Society Student Texts). Volume 1: Theory. Cambridge University Press. https://doi.org/10.1017/CBO9781107358508
- Curbelo, J., Chen, G., & Mechoso, C. R. (2021). Lagrangian analysis of the northern stratospheric polar vortex split in April 2020. Geophysical Research Letters, 48(16), e2021GL093874. https://doi.org/10.1029/2021GL093874
- Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., ... & Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), Part A, 553–597. https://doi.org/10.1002/qj.828
- de la Torre, L., Garcia, R. R., Barriopedro, D., & Chandran, A. (2012). Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Atmospheres, 117(D4), D04110. https://doi.org/10.1029/2011JD016840
- de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., & Kinnison, D. E. (2014). Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming. Geophysical Research Letters, 41(13), 4745–4752. https://doi.org/10.1002/2014GL060501
- Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bednarz, E. M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S. C., Hassler, B., Horowitz, L. W., ... & Zeng, G. (2018). Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 18(11), 8409–8438. https://doi.org/10.5194/acp-18-8409-2018
- Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiocco, G., Fiorucci, I., & Fuà, D. (2010). Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and millimeter-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland. Journal of Geophysical Research: Atmospheres, 115(D24), D24315. https://doi.org/10.1029/2010JD014070
- Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., & Rodrigues, L. R. L. (2013). Seasonal climate predictability and forecasting: status and prospects. WIREs (Wiley Interdisciplinary Reviews) Climate Change, 4(4), 245–268. https://doi.org/10.1002/wcc.217
- Domeisen, D. I. V., Garfinkel, C. I., & Butler, A. H. (2019). The teleconnection of El Niño Southern Oscillation to the stratosphere. Reviews of Geophysics, 57(1), 5–47. https://doi.org/10.1029/2018RG000596
- Domeisen, D. I. V., Grams, C. M., & Papritz, L. (2020). The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events. Weather and Climate Dynamics, 1(2), 373–388. https://doi.org/10.5194/wcd-1-373-2020
- Dwyer, J. G., & O’Gorman, P. A. (2017). Moist formulations of the Eliassen–Palm flux and their connection to the surface westerlies. Journal of the Atmospheric Sciences, 74(2), 513–530. https://doi.org/10.1175/JAS-D-16-0111.1
- Evans, R. D. (2008). Operations handbook – ozone observations with a Dobson spectrophotometer: Revised 2008, GAW Report No. 183, WMO/TD-No. 1469.
- Evtushevsky, O., Milinevsky, G., Grytsai, A., Kravchenko, V., Grytsai, Z., & Leonov, M. (2008a). Comparison of ground-based Dobson and satellite EP-TOMS total ozone measurements over Vernadsky station, Antarctica, 1996–2005. International Journal of Remote Sensing, 29 (9), 2675–2683. https://doi.org/10.1080/01431160701767591
- Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., & Milinevsky, G. P. (2008b). Total ozone and tropopause zonal asymmetry during the Antarctic spring. Journal of Geophysical Research: Atmospheres, 113(D7), D00B06. https://doi.org/10.1029/2008JD009881
- Evtushevsky, O., Klekociuk, A., Grytsai, A., Milinevsky, G., & Lozitsky, V. (2011). Troposphere and stratosphere influence on tropopause in the polar regions during winter and spring. International Journal of Remote Sensing, 32(11), 3153–3164. http://dx.doi.org/10.1080/01431161.2010.541515
- Evtushevsky, O. M., Kravchenko, V. O., Hood, L. L., & Milinevsky, G. P. (2015). Teleconnection between the central tropical Pacific and the Antarctic stratosphere: spatial patterns and time lags. Climate Dynamics, 44, 1841–1855. https://doi.org/10.1007/s00382-014-2375-2
- Evtushevsky, O. M., Grytsai, A. V., & Milinevsky, G. P. (2019). Decadal changes in the central tropical Pacific teleconnection to the Southern Hemisphere extratropics. Climate Dynamics, 52, 4027–4055. https://doi.org/10.1007/s00382-018-4354-5
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
- Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210. https://doi.org/10.1038/315207a0
- Fleming, E. L., Chandra, S., Barnett, J. J., & Corney, M. (1990). Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Advances in Space Research, 10(12), 11–59. https://doi.org/10.1016/0273-1177(90)90386-E
- Flynn, L., Long, C., Wu, X., Evans, R., Beck, C. T., Petropavlovskikh, I., McConville, G., Yu, W., Zhang, Z., Niu, J., Beach, E., Hao, Y., Pan, C., Sen, B., Novicki, M., Zhou, S., & Seftor, C. (2014). Performance of the Ozone Mapping and Profiler Suite (OMPS) products. Journal of Geophysical Research: Atmospheres, 119(10), 6181–6195. https://doi.org/10.1002/2013JD020467
- Forkman, P., Christensen, O. M., Eriksson, P., Billade, B., Vassilev, V., & Shulga, V. M. (2016). A compact receiver system for simultaneous measurements of mesospheric CO and O3. Geoscientific Instrumentation, Methods and Data Systems 5(1), 27–44. https://doi.org/10.5194/gi-5-27-2016
- France, J. A., & Harvey, V. L. (2013). A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. Journal of Geophysical Research: Atmospheres, 118(5), 2241–2254. https://doi.org/10.1002/jgrd.50218
- Friedel, M., Chiodo, G., Stenke, A., Domeisen, D. I. V., Fueglistaler, S., Anet, J. G., & Peter., T. (2022). Springtime arctic ozone depletion forces northern hemisphere climate anomalies. Nature Geoscience, 15, 541–547. https://doi.org/10.1038/s41561-022-00974-7
- Frith, S. M., Kramarova, N. A., Stolarski, R. S., McPeters, R. D., Bhartia, P. K., & Labow, G. J. (2014). Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set. Journal of Geophysical Research: Atmospheres, 119(16), 9735–9751. https://doi.org/10.1002/2014JD021889
- Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., & Linden, A. (2009). Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 μm non-local thermal equilibrium emissions measured by MIPAS on Envisat. Atmospheric Chemistry and Physics, 9(7), 2387–2411. https://doi.org/10.5194/acp-9-2387-2009
- Gardner, C. S. (2018). Role of wave-induced diffusion and energy flux in the vertical transport of atmospheric constituents in the mesopause region. Journal of Geophysical Research: Atmospheres, 123(12), 6581–6604. https://doi.org/10.1029/2018JD028359
- Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullanther, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., ... & Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1
- Godin-Beekmann, S. (2010). Spatial observation of the ozone layer. Comptes Rendus Geoscience, 342(4–5), 339–348. https://doi.org/10.1016/j.crte.2009.10.012
- Gritsai, Z. I., Evtushevsky, A. M., Leonov, N. A., & Milinevsky, G. P. (2000). Comparison of ground-based TOMS-EP total ozone data for Antarctica and northern midlatitude stations (1996–1999). Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere, 25(5–6), 459–461. https://doi.org/10.1016/S1464-1909(00)00044-7
- Grytsai, A. (2011). Planetary wave peculiarities in Antarctic ozone distribution during 1979–2008. International Journal of Remote Sensing, 32(11), 3139–3151. https://doi.org/10.1080/01431161.2010.541518
- Grytsai, A. & Milinevsky, G. (2013). SCIAMACHY/Envisat, OMI/Aura, and ground-based total ozone measurements over Kyiv-Goloseyev station. International Journal of Remote Sensing, 34(15), 5611–5622. http://dx.doi.org/10.1080/01431161.2013.794988
- Grytsai, A., Grytsai, Z., Evtushevsky, A., & Milinevsky, G. (2005a). Interannual variability of planetary waves in the ozone layer at 65°S. International Journal of Remote Sensing, 26(16), 3377–3387. https://doi.org/10.1080/01431160500076350
- Grytsai, A., Grytsai, Z., Evtushevsky, A., Milinevsky, G., & Leonov, N. (2005b). Zonal wave numbers 1–5 in planetary waves from the TOMS total ozone at 65°S. Annales Geophysicae, 23(5), 1565–1573. https://doi.org/10.5194/angeo-23-1565-2005
- Grytsai, A. V., Evtushevsky, O. M., Milinevsky, G. P., Grytsai, Z. I., & Agapitov, O. V. (2005c). Longitudinal distribution of total ozone content in edge region of antarctic stratospheric vortex. Space Science and Technology, 11(5–6). https://doi.org/10.15407/knit2005.05.005
- Grytsai, A. V., Evtushevsky, O. M., Agapitov, O. V., Klekociuk, A. R., & Milinevsky, G. P. (2007). Structure and longterm change in the zonal asymmetry in Antarctic total ozone during spring. Annales Geophysicae, 25(2), 361–374. https://doi.org/10.5194/angeo-25-361-2007
- Grytsai, A. V., Evtushevsky, O. M., & Milinevsky, G. P. (2008). Anomalous quasi-stationary planetary waves over the Antarctic region in 1988 and 2002. Annales Geophysicae, 26(5), 1101–1108. https://doi.org/10.5194/angeo-26-1101-2008
- Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., & Stone, K. (2017). Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column. Atmospheric Chemistry and Physics, 17(3), 1741–1758. https://doi.org/10.5194/acp-17-1741-2017
- Grytsai, A., Milinevsky, G., Andrienko, Yu., Klekociuk, A., Rapoport, Yu., & Ivaniha, O. (2022). Antarctic planetary wave spectrum under different polar vortex conditions in 2019 and 2020 based on total ozone column data. Ukrainian Antarctic Journal, 20(1), 31–43. https://doi.org/10.33275/1727-7485.1.2022.687
- Hassler, B., Bodeker, G. E., Solomon, S., & Young, P. J. (2011). Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations. Geophysical Research Letters, 38(1), L01805. https://doi.org/10.1029/2010GL045542
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999– 2049. https://doi.org/10.1002/qj.3803
- Hoffmann, C. G., Raffalski, U., Palm, M., Funke, B., Golchert, S. H. W., Hochschild, G., & Notholt, J. (2011). Observation of strato-mesospheric CO above Kiruna with ground-based microwave radiometry–retrieval and satellite comparison. Atmospheric Measurement Techniques, 4(11), 2389–2408. https://doi.org/10.5194/amt-4-2389-2011
- Hongming, Y., Yuan, Y., Guirong, T., & Yucheng, Z. (2022). Possible impact of sudden stratospheric warming on the intraseasonal reversal of the temperature over East Asia in winter 2020/21. Atmospheric Research, 268, 106016. https://doi.org/10.1016/j.atmosres.2022.106016
- Hu, J., Ren, R., & Xu, H. (2014). Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. Journal of the Atmospheric Sciences, 71(7), 2319–2334. https://doi.org/10.1175/JAS-D-13-0349.1
- Hu, D., Tian, W., Xie, F., Wang, C., & Zhang, J. (2015). Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. Journal of Geophysical Research: Atmospheres, 120(16), 8299–8317. https://doi.org/10.1002/2014JD022855
- Huck, P. E., McDonald, A. J., Bodeker, G. E., & Struthers, H. (2005). Interannual variability in Antarctic ozone depletion controlled by planetary waves and polar temperature. Geophysical Research Letters, 32(13), L13819. https://doi.org/10.1029/2005GL022943
- Huret, N., Pirre, M., Hauchecorne, A., Robert, C., & Catoire, V. (2006). On the vertical structure of the stratosphere at midlatitudes during the first stage of the polar vortex formation and in the polar region in the presence of a large mesospheric descent. Journal of Geophysical Research: Atmospheres, 111(D6), D06111. https://doi.org/10.1029/2005JD006102
- Ivaniha, O. (2020). Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data. Ukrainian Antarctic Journal, 1, 41–55. https://doi.org/10.33275/1727-7485.1.2020.378
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., ... & Joseph, D. (1996). The NCEP–NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
- Karpechko, A. Yu., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., & Vitart, F. (2018). Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophysical Research Letters, 45(24), 13538–13546. https://doi.org/10.1029/2018GL081091
- Keller, J. D., & Wahl, S. (2021). Representation of climate in reanalyses: An intercomparison for Europe and North America. Journal of Climate, 34(5), 1667–1684. https://doi.org/10.1175/JCLI-D-20-0609.1
- Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van der Dool, H., Jenne, R., & Fiorino, M. (2001). The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD–ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247–268. https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2
- Kodera, K., Mukougawa, H., Maury, P., Ueda, M., & Claud, C. (2016). Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. Journal of Geophysical Research: Atmospheres, 121(1), 80–94. https://doi.org/10.1002/2015JD023359
- Kravchenko, V., Evtushevsky, A., Grytsai, A., Milinevsky G., & Shanklin, J. (2009). Total ozone dependence of the difference between the empirically corrected EP-TOMS and high-latitude station datasets. International Journal of Remote Sensing, 30(15–16), 4283–4294. https://doi.org/10.1080/01431160902825008
- Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., & Grytsai, Z. I. (2012). Quasi-stationary Planetary Waves in Late Winter Antarctic Stratosphere Temperature as a Possible Indicator of Spring Total Ozone. Atmospheric Chemistry and Physics, 12(6), 2865–2879. https://doi.org/10.5194/acp-12-2865-2012
- Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Milinevsky, G. P., & Klekociuk, A. R. (2018). Preconditions for the ozone hole decrease in 2017. Ukrainian Journal of Remote Sensing, 18, 5358. https://doi.org/10.36023/ujrs.2018.18.130
- Kvissel, O. K., Orsolini, Y. J., Stordal, F., Limpasuvan, V., Richter, J., & Marsh, D. R. (2012). Mesospheric intrusion and anomalous chemistry during and after a major stratospheric sudden warming. Journal of Atmospheric and Solar-Terrestrial Physics, 78–79, 116–124. https://doi.org/10.1016/j.jastp.2011.08.015
- Lee, S. H., & Butler, A. H. (2020). The 2018–2019 Arctic stratospheric polar vortex. Weather, 75(2), 52–57. https://doi.org/10.1002/wea.3643
- Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J., Bhartia, P. K., Tamminen, J., de Haan, J. F., & Veefkind, J. P. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1199–1208. https://doi.org/10.1109/TGRS.2006.872336
- Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., & Smith, A. K. (2016). On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. Journal of Geophysical Research: Atmospheres, 121(9), 4518–4537. https://doi.org/10.1002/2015JD024401
- Lin, P., Fu, Q., Solomon, S., & Wallace, J. M. (2009). Temperature trend patterns in Southern Hemisphere high latitudes: Novel indicators of stratospheric change. Journal of Climate, 22(23), 6325–6341. https://doi.org/10.1175/2009JCLI2971.1
- Liu, G., Hirooka, T., Eguchi, N., & Krüger, K. (2022). Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019. Atmospheric Chemistry and Physics, 22(5), 3493–3505. https://doi.org/10.5194/acp-22-3493-2022
- Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., Lambert, A., Millán Valle, L. F., Pumphrey, H. C., Manney, G. L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., & Lay, R. R. (2022). Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 5.0x Level 2 and 3 data quality and description document. Version 5.0x–1.1a (JPL D-105336 Rev. B.). Jet Propulsion Laboratory, California Institute of Technology. https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf
- Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., & Livesey, N. J. (2009). Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophysical Research Letters, 36(12), L12815. https://doi.org/10.1029/2009GL038586
- Manney, G. L., Lawrence, Z. D., Santee, M. L., Livesey, N. J., Lambert, A., & Pitts, M. C. (2015). Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013. Atmospheric Chemistry and Physics, 15(10), 5381–5403. https://doi.org/10.5194/acp-15-5381-2015
- McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer, C. G., Seftor, C. J., Jaross, G., Torres, O., Moy, L., Labow, G., Byerly, W., Taylor, S. L., Swissler, T., & Cebula, R. P. (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Technical Publication 1998-206895). National Aeronautics and Space Administration. Goddard Space Flight Center Greenbelt, Maryland.
- McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J. P., Bhartia, P. K., & Levelt, P. F. (2008). Validation of the Aura Ozone Monitoring Instrument total column ozone product. Journal of Geophysical Research: Atmospheres, 113(D15), D15S14. https://doi.org/10.1029/2007JD008802
- Milinevsky, G. P., Danylevsky, V. O., Grytsai, A. V., Evtushevsky, O. M., Kravchenko, V. O., Bovchaliuk, A. P., Bovchaliuk, V. P., Sosonkin, M. G., Goloub, Ph., Savitska, L. Y., Udodov, E. V., & Voytenko, V. P. (2012). Recent developments of atmospheric research in Ukraine. Advances in Astronomy and Space Physics, 2(2), 114–120.
- Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., & Ivaniha, O. (2020). Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. International Journal of Remote Sensing, 41(19), 7530–7540. https://doi.org/10.1080/2150704X.2020.1763497
- Milinevsky, G. P., Grytsai, A. V., Evtushevsky, O. M., & Klekociuk, A. R. (2022). Contributions to understanding climate in teractions: stratospheric ozone. Akademperiodyka. https://doi.org/10.15407/academperiodyka.252.471
- Orsolini, Y. J., Limpasuvan, V., Pérot, K., Espy, P., Hibbins, R., Lossow, S., Larsson, K. R., & Murtagh, D. (2017). Modelling the descent of nitric oxide during the elevated stratopause event of January 2013. Journal of atmospheric and Solar-Terrestrial Physics, 155, 50–61. https://doi.org/10.1016/j.jastp.2017.01.006
- Pinsky, M. A. (2009). Introduction to Fourier analysis and wavelets. American Mathematical Society. http://dx.doi.org/10.1090/gsm/102
- Piters, A. J. M., Bramstedt, K., Lambert, J.-C., & Kirchhoff, B. (2006). Overview of SCIAMACHY validation: 2002–2004. Atmospheric Chemistry and Physics, 6, 127–148. https://doi.org/10.5194/acp-6-127-2006
- Randel, W. J., Wu, F., & Stolarski, R. (2002). Changes in column ozone correlated with the stratospheric EP flux. Journal of the Meteorological Society of Japan. Ser. II, 80(4B), 849–862. https://doi.org/10.2151/jmsj.80.849
- Rao, J., Ren, R., Chen, H., Yu, Y., & Zhou, Y. (2018). The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. Journal of Geophysical Research: Atmospheres, 123(23), 13332–13345. https://doi.org/10.1029/2018JD028908
- Rüfenacht, R., Kämpfer, N., & Murk, A. (2012). First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmospheric Measurement Techniques, 5(11), 2647–2659. https://doi.org/10.5194/amt-5-2647-2012
- Ryan, N. J., Kinnison, D. E., Garcia, R. R., Hoffmann, C. G., Palm, M., Raffalski, U., & Notholt, J. (2018). Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. Atmospheric Chemistry and Physics, 18(3), 1457–1474. https://doi.org/10.5194/acp-18-1457-2018
- Salby, M. L. (1982). Sampling theory for asynoptic satellite observations. Part II: Fast fourier synoptic mapping. Journal of the Atmospheric Sciences, 39(11), 2601–2614. https://doi.org/10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2
- Salby, M. L., Titova, E. A., & Deschamps, L. (2012). Changes of the Antarctic ozone hole: controlling mechanisms, seasonal predictability, and evolution. Journal of Geophysical Research: Atmospheres, 117(D10), D10111. https://doi.org/10.1029/2011JD016285
- Salmi, S.-M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Yu., & Seppälä, A. (2011). Mesosphere- to-stratosphere descent of odd nitrogen in February–March 2009 after sudden stratospheric warming. Atmospheric Chemistry and Physics, 11(10), 4645–4655. https://doi.org/10.5194/acp-11-4645-2011
- Scheffler, J., Ayarzagüena, B., Orsolini, Y. J., & Langematz, U. (2022). Elevated stratopause events in the current and a future climate: A chemistry-climate model study. Journal of Atmospheric and Solar-Terrestrial Physics, 227, 105804. https://doi.org/10.1016/j.jastp.2021.105804
- Schoeberl, M. R. (1978). Stratospheric warmings: Observations and theory. Reviews of Geophysics, 16(4), 521–538. https://doi.org/10.1029/RG016i004p00521
- Shi, Y., Evtushevsky, O., Shulga, V., Milinevsky, G., Klekociuk, A., Andrienko, Y., & Han, W. (2021). Mid-latitude mesospheric zonal wave 1 and wave 2 in recent boreal winters. Remote Sensing, 13(18), 3749. https://doi.org/10.3390/rs13183749
- Shi, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Han, W., Ivaniha, O., Andrienko, Y., Shulga, V., & Zhang, C. (2022). Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sensing, 14(6), 1496. https://doi.org/10.3390/rs14061496
- Shi, Y., Shulga, V., Ivaniha, O., Wang, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Patoka, A., Han, W., & Shulga, D. (2020). Comparison of major sudden stratospheric warming impacts on the mid-latitude mesosphere based on local microwave radiometer CO observations in 2018 and 2019. Remote Sensing, 12(23), 3950. https://doi.org/10.3390/rs12233950
- Siddaway, J., Klekociuk, A., Alexander, S.P., Grytsai, A., Milinevsky, G., Dargaville, R., Ivaniha, O., & Evtushevsky, O. (2020). Assessment of the zonal asymmetry trend in Antarctic total ozone column using TOMS measurements and CCMVal-2 models. Ukrainian Antarctic Journal, 2, 50–58. https://doi.org/10.33275/1727-7485.2.2020.652
- Slivinski, L. C., Compo, G. P., Sardeshmukh, P. D., Whitaker, J. S., McColl, C., Allan, R. J., Brohan, P., Yin, X., Smith, C. A., Spencer, L. J., Vose, R. S., Rohrer, M., Conroy, R. P., Schuster, D. C., Kennedy, J. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., ... & Wyszyński, P. (2021). An evaluation of the performance of the Twentieth Century Reanalysis Version 3. Journal of Climate, 34(4), 1417–1438. https://doi.org/10.1175/JCLI-D-20-0505.1
- Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37(3), 275–316. https://doi.org/10.1029/1999RG900008
- Solomon, S., Garcia, R. R., Olivero, J. J., Bevilacqua, R. M., Schwartz, P. R., Clancy, R. T., & Muhleman, D. O. (1985). Photochemistry and transport of carbon monoxide in the middle atmosphere. Journal of the Atmospheric Sciences, 42(10), 1072–1083. https://doi.org/10.1175/1520-0469(1985)042<1072:PATOCM>2.0.CO;2
- Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., & Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science, 353(6296), 269–274. https://doi.org/10.1126/science.aae0061
- Staehelin, J., Petropavlovskikh, I., De Mazière, M., & Godin-Beekmann, S. (2018). The role and performance of groundbased networks in tracking the evolution of the ozone layer. Comptes Rendus Geoscience, 350(7), 354–367. https://doi.org/10.1016/j.crte.2018.08.007
- Taguchi, M. (2018). Comparison of subseasonal-to-seasonal model forecasts for major stratospheric sudden warmings. Journal of Geophysical Research: Atmospheres, 123(18), 10231–10247. https://doi.org/10.1029/2018jd028755
- Tanaka, D., Iwasaki, T., Uno, S., Ujiie, M., & Miyazaki, K. (2004). Eliassen–Palm flux diagnosis based on isentropic representation. Journal of the Atmospheric Sciences, 61(19), 2370–2383. https://doi.org/10.1175/1520-0469(2004)061<2370:EFDBOI>2.0.CO;2
- Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., & Riese, M. (2015). Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere. Atmospheric Chemistry and Physics, 15(15), 8695–8715. https://doi.org/10.5194/acp-15-8695-2015
- Teng, H., & Branstator, G. (2012). A zonal wave number 3 pattern of northern hemisphere wintertime planetary wave variability at high latitudes. Journal of Climate, 25(19), 6756–6769. https://doi.org/10.1175/JCLI-D-11-00664.1
- Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Cheung, J. C. H., Eckermann, S. D., Gerber, E., Jackson, D. R., Kuroda, Yu., Lang, A., McLay, J., Mizuta, R., Reynolds, C., Roff, G., Sigmond, M., Son, S.-W., & Stockdale, T. (2016). Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Monthly Weather Review, 144(5), 1935–1960. https://doi.org/10.1175/mwr-d-15-0010.1
- Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann, S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y., Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., & Son, S.-W. (2015). The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quarterly Journal of the Royal Meteorological Society. Part B, 141(689), 987–1003. https://doi.org/10.1002/qj.2432
- van der A, R. J., Allaart, M. A. F., & Eskes, H. J. (2010). Multisensor reanalysis of total ozone. Atmospheric Chemistry and Physics, 10(22), 11277–11294. https://doi.org/10.5194/acp-10-11277-2010
- Wang, Y., Shulga, V., Milinevsky, G., Patoka, A., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Shulga, D., Myshenko, V., & Antyufeyev, O. (2019). Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmospheric Chemistry and Physics,19(15), 10303–10317. https://doi.org/10.5194/acp-19-10303-2019
- Wang, Y., Milinevsky, G., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Antyufeyev, O., Shi, Y., Ivaniha, O., & Shulga, V. (2021). Planetary wave spectrum in the stratosphere–mesosphere during sudden stratospheric warming 2018. Remote Sensing, 13(6), 1190. https://doi.org/10.3390/rs13061190
- Wang, H., Dai, Y., Yang, S., Li, T., Luo, J., Sun, B., Duan, M., Ma, J., Yin, Z., & Huang, Y. (2022). Predicting climate anomalies: A real challenge. Atmospheric and Oceanic Science Letters, 15(1), 100115. https://doi.org/10.1016/j.aosl.2021.100115
- Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., ... & Walch, M. J. (2006). The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1075–1092. https://doi.org/10.1109/TGRS.2006.873771
- Wirth, V. (1993). Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. Journal of Geophysical Research: Atmospheres, 98(D5), 8873–8882. https://doi.org/10.1029/92JD02820
- WMO (World Meteorological Organization). (2018). Scientific Assessment of Ozone Depletion: 2018 (Global Ozone Research and Monitoring Project – Report No. 58).
- WMO (World Meteorological Organization). (2022). Centennial observing stations: State of recognition Report – 2021 WMO-No. 1296 [Brochure]. https://library.wmo.int/index.php?lvl=notice_display&id=22119#.Y-Ikyy_P3IU
- Yang, C., Li, T., Dou, X., & Xue, X. (2015). Signal of central Pacific El Niño in the Southern Hemispheric stratosphere during austral spring. Journal of Geophysical Research: Atmospheres, 120(22), 11438–11450. https://doi.org/10.1002/2015JD023486
- Yu, Y., Cai, M., Shi, C., & Ren, R. (2018). On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events. Monthly Weather Review, 146(9), 2717–2739. https://doi.org/10.1175/MWR-D-18-0110.1
- Zhang, C., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Andrienko, Yu., Shulga, V., Han, W., & Shi, Y. (2022a). The annual cycle in mid-latitude stratospheric and mesospheric ozone associated with quasi-stationary wave structure by the MLS data 2011–2020. Remote Sensing, 14(10), 2309. https://doi.org/10.3390/rs14102309
- Zhang, C., Grytsai, A., Evtushevsky, O., Milinevsky, G., Andrienko, Y., Shulga, V., Klekociuk, A., Rapoport, Yu., & Han, W. (2022b). Rossby waves in total ozone over the Arctic in 2000–2021. Remote Sensing, 14(9), 2192. https://doi.org/10.3390/rs14092192