Ukrainian Antarctic Journal

Vol 20 No 2(25) (2022): Ukrainian Antarctic Journal
Articles

The data processing and analysis methods for stratospheric ozone and planetary wave study

Y. Shi
International Center of Future Science, College of Physics, Jilin University, Changchun, 130012, China
O. Evtushevsky
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
G. Milinevsky
International Center of Future Science, College of Physics, Jilin University, Changchun, 130012, China; Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
A. Grytsai
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
A. Klekociuk
Antarctic Climate Program, Australian Antarctic Division, Kingston, 7050, Australia; University of Adelaide, Adelaide, 5005, Australia
O. Ivaniha
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Yu. Andrienko
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Published December 30, 2022
Keywords
  • data source,
  • MERRA-2,
  • method,
  • ozone,
  • reanalysis,
  • visualization
  • ...More
    Less
How to Cite
Shi, Y., Evtushevsky, O., Milinevsky, G., Grytsai, A., Klekociuk, A., Ivaniha, O., & Andrienko, Y. (2022). The data processing and analysis methods for stratospheric ozone and planetary wave study. Ukrainian Antarctic Journal, 20(2(25), 164-187. https://doi.org/10.33275/1727-7485.2.2022.698

Abstract

We describe the methods and data sources for investigating the stratospheric ozone and planetary waves in the atmosphere in the framework of research provided by our international team. Selected ground-based and satellite instruments for ozone measurements and related reanalyses are described. Examples of data and analysis tools are shown. The technique of planetary wave spectral analysis under conditions of dynamic changes during sudden stratospheric warmings is presented. A brief description of the main results, obtained with the participation of the authors, using combined methods of analysis are considered. We describe procedures for the investigation of a long-term eastward displacement of the zonal ozone minimum over the Antarctic in the spring months, analysis of the spatial and temporal characteristics of the teleconnection between the tropical thermal source and the Antarctic stratosphere, and the creation of the predictive index used for the forecast of possible ozone hole anomalous development in spring months. Examples of application of analysis methods to retrieve the changes in the zonal asymmetry of the Arctic stratopause and features of the annual ozone cycle in connection with zonal ozone asymmetry are discussed.

References

  1. Agosta, E. A., & Canziani, P. O. (2010). Interannual variations in the zonal asymmetry of the subpolar latitudes total ozone column during the austral spring. Geoacta, 35(1), 1–16.
  2. Allen, D. R., Bevilacqua, R. M., Nedoluha, G. E., Randall, C. E., & Manney, G. L. (2003). Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophysical Research Letters, 30(12), 1599. https://doi.org/10.1029/2003GL017117
  3. Angot, G., Keckhut, P., Hauchecorne, A., & Claud, C. (2012). Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N). Journal of Geophysical Research: Atmospheres, 117(D21), D21102. https://doi.org/10.1029/2012JD017631
  4. Antón, M., Koukouli, M. E., Kroon, M., McPeters, R. D., Labow, G. J., Balis, D., & Serrano, A. (2010). Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. Journal of Geophysical Research: Atmospheres, 115(D19), D19305. https://doi.org/10.1029/2010JD014178
  5. Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 294(5542), 581–584. https://doi.org/10.1126/science.1063315
  6. Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., & Pedatella, N. M. (2021). Sudden stratospheric warmings. Reviews of Geophysics, 59(1), e2020RG000708. https://doi.org/10.1029/2020RG000708
  7. Bramstedt, K., Gleason, J., Loyola, D., Thomas, W., Bracher, A., Weber, M., & Burrows, J. P. (2003). Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000. Atmospheric Chemistry and Physics, 3(5), 1409–1419. https://doi.org/10.5194/acp-3-1409-2003
  8. Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., & Perner, D. (1999). The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results. Journal of the Atmospheric Sciences, 56(2), 151–175. https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
  9. Butler, A. H., & Gerber, E. P. (2018). Optimizing the definition of a sudden stratospheric warming. Journal of Climate, 31(6), 2337–2344. https://doi.org/10.1175/JCLI-D-17-0648.1
  10. Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63–76. https://doi.org/10.5194/essd-9-63-2017
  11. Butler, A. H., Lawrence, Z. D., Lee, S. H., Lillo, S. P., & Long, C. S. (2020). Differences between the 2018 and 2019 stratospheric polar vortex split events. Quarterly Journal of the Royal Meteorological Society, 146 (732), 3503–3521. https://doi.org/10.1002/qj.3858
  12. Chandran, A., & Collins, R. L. (2014). Stratospheric sudden warming effects on winds and temperature in the middle atmosphere at middle and low latitudes: a study using WACCM. Annales Geophysicae, 32(7), 859–874. https://doi.org/10.5194/angeo-32-859-2014
  13. Chandran, A., Collins, R. L., Garcia, R. R., & Marsh, D. R. (2011). A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model. Geophysical Research Letters, 38(8), L08804. https://doi.org/10.1029/2010GL046566
  14. Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L., Yue, J., & de la Torre, L. (2013). A climatology of elevated stratopause events in the whole atmosphere community climate model. Journal of Geophysical Research: Atmospheres, 118(3), 1234–1246. https://doi.org/10.1002/jgrd.50123
  15. Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. Journal of Climate, 20 (3), 449–469. https://doi.org/10.1175/JCLI3996.1
  16. Choi, H., Kim, J.-H., Kim, B.-M., & Kim, S.-J. (2021). Observational evidence of distinguishable weather patterns for three types of sudden stratospheric warming during northern winter. Frontiers in Earth Science, 9, 625868. https://doi.org/10.3389/feart.2021.625868
  17. Chubachi, S. (1984). Preliminary result of ozone observations at Syowa station from February 1982 to January 1983. Memoirs of National Institute of Polar Research Japan, Special issue, 34, 13–19.
  18. Constantin, A. (2016). Fourier Analysis (London Mathematical Society Student Texts). Volume 1: Theory. Cambridge University Press. https://doi.org/10.1017/CBO9781107358508
  19. Curbelo, J., Chen, G., & Mechoso, C. R. (2021). Lagrangian analysis of the northern stratospheric polar vortex split in April 2020. Geophysical Research Letters, 48(16), e2021GL093874. https://doi.org/10.1029/2021GL093874
  20. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., ... & Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), Part A, 553–597. https://doi.org/10.1002/qj.828
  21. de la Torre, L., Garcia, R. R., Barriopedro, D., & Chandran, A. (2012). Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Atmospheres, 117(D4), D04110. https://doi.org/10.1029/2011JD016840
  22. de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., & Kinnison, D. E. (2014). Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming. Geophysical Research Letters, 41(13), 4745–4752. https://doi.org/10.1002/2014GL060501
  23. Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bednarz, E. M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S. C., Hassler, B., Horowitz, L. W., ... & Zeng, G. (2018). Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 18(11), 8409–8438. https://doi.org/10.5194/acp-18-8409-2018
  24. Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiocco, G., Fiorucci, I., & Fuà, D. (2010). Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and millimeter-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland. Journal of Geophysical Research: Atmospheres, 115(D24), D24315. https://doi.org/10.1029/2010JD014070
  25. Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., & Rodrigues, L. R. L. (2013). Seasonal climate predictability and forecasting: status and prospects. WIREs (Wiley Interdisciplinary Reviews) Climate Change, 4(4), 245–268. https://doi.org/10.1002/wcc.217
  26. Domeisen, D. I. V., Garfinkel, C. I., & Butler, A. H. (2019). The teleconnection of El Niño Southern Oscillation to the stratosphere. Reviews of Geophysics, 57(1), 5–47. https://doi.org/10.1029/2018RG000596
  27. Domeisen, D. I. V., Grams, C. M., & Papritz, L. (2020). The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events. Weather and Climate Dynamics, 1(2), 373–388. https://doi.org/10.5194/wcd-1-373-2020
  28. Dwyer, J. G., & O’Gorman, P. A. (2017). Moist formulations of the Eliassen–Palm flux and their connection to the surface westerlies. Journal of the Atmospheric Sciences, 74(2), 513–530. https://doi.org/10.1175/JAS-D-16-0111.1
  29. Evans, R. D. (2008). Operations handbook – ozone observations with a Dobson spectrophotometer: Revised 2008, GAW Report No. 183, WMO/TD-No. 1469.
  30. Evtushevsky, O., Milinevsky, G., Grytsai, A., Kravchenko, V., Grytsai, Z., & Leonov, M. (2008a). Comparison of ground-based Dobson and satellite EP-TOMS total ozone measurements over Vernadsky station, Antarctica, 1996–2005. International Journal of Remote Sensing, 29 (9), 2675–2683. https://doi.org/10.1080/01431160701767591
  31. Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., & Milinevsky, G. P. (2008b). Total ozone and tropopause zonal asymmetry during the Antarctic spring. Journal of Geophysical Research: Atmospheres, 113(D7), D00B06. https://doi.org/10.1029/2008JD009881
  32. Evtushevsky, O., Klekociuk, A., Grytsai, A., Milinevsky, G., & Lozitsky, V. (2011). Troposphere and stratosphere influence on tropopause in the polar regions during winter and spring. International Journal of Remote Sensing, 32(11), 3153–3164. http://dx.doi.org/10.1080/01431161.2010.541515
  33. Evtushevsky, O. M., Kravchenko, V. O., Hood, L. L., & Milinevsky, G. P. (2015). Teleconnection between the central tropical Pacific and the Antarctic stratosphere: spatial patterns and time lags. Climate Dynamics, 44, 1841–1855. https://doi.org/10.1007/s00382-014-2375-2
  34. Evtushevsky, O. M., Grytsai, A. V., & Milinevsky, G. P. (2019). Decadal changes in the central tropical Pacific teleconnection to the Southern Hemisphere extratropics. Climate Dynamics, 52, 4027–4055. https://doi.org/10.1007/s00382-018-4354-5
  35. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
  36. Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210. https://doi.org/10.1038/315207a0
  37. Fleming, E. L., Chandra, S., Barnett, J. J., & Corney, M. (1990). Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Advances in Space Research, 10(12), 11–59. https://doi.org/10.1016/0273-1177(90)90386-E
  38. Flynn, L., Long, C., Wu, X., Evans, R., Beck, C. T., Petropavlovskikh, I., McConville, G., Yu, W., Zhang, Z., Niu, J., Beach, E., Hao, Y., Pan, C., Sen, B., Novicki, M., Zhou, S., & Seftor, C. (2014). Performance of the Ozone Mapping and Profiler Suite (OMPS) products. Journal of Geophysical Research: Atmospheres, 119(10), 6181–6195. https://doi.org/10.1002/2013JD020467
  39. Forkman, P., Christensen, O. M., Eriksson, P., Billade, B., Vassilev, V., & Shulga, V. M. (2016). A compact receiver system for simultaneous measurements of mesospheric CO and O3. Geoscientific Instrumentation, Methods and Data Systems 5(1), 27–44. https://doi.org/10.5194/gi-5-27-2016
  40. France, J. A., & Harvey, V. L. (2013). A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. Journal of Geophysical Research: Atmospheres, 118(5), 2241–2254. https://doi.org/10.1002/jgrd.50218
  41. Friedel, M., Chiodo, G., Stenke, A., Domeisen, D. I. V., Fueglistaler, S., Anet, J. G., & Peter., T. (2022). Springtime arctic ozone depletion forces northern hemisphere climate anomalies. Nature Geoscience, 15, 541–547. https://doi.org/10.1038/s41561-022-00974-7
  42. Frith, S. M., Kramarova, N. A., Stolarski, R. S., McPeters, R. D., Bhartia, P. K., & Labow, G. J. (2014). Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set. Journal of Geophysical Research: Atmospheres, 119(16), 9735–9751. https://doi.org/10.1002/2014JD021889
  43. Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., & Linden, A. (2009). Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 μm non-local thermal equilibrium emissions measured by MIPAS on Envisat. Atmospheric Chemistry and Physics, 9(7), 2387–2411. https://doi.org/10.5194/acp-9-2387-2009
  44. Gardner, C. S. (2018). Role of wave-induced diffusion and energy flux in the vertical transport of atmospheric constituents in the mesopause region. Journal of Geophysical Research: Atmospheres, 123(12), 6581–6604. https://doi.org/10.1029/2018JD028359
  45. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullanther, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., ... & Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1
  46. Godin-Beekmann, S. (2010). Spatial observation of the ozone layer. Comptes Rendus Geoscience, 342(4–5), 339–348. https://doi.org/10.1016/j.crte.2009.10.012
  47. Gritsai, Z. I., Evtushevsky, A. M., Leonov, N. A., & Milinevsky, G. P. (2000). Comparison of ground-based TOMS-EP total ozone data for Antarctica and northern midlatitude stations (1996–1999). Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere, 25(5–6), 459–461. https://doi.org/10.1016/S1464-1909(00)00044-7
  48. Grytsai, A. (2011). Planetary wave peculiarities in Antarctic ozone distribution during 1979–2008. International Journal of Remote Sensing, 32(11), 3139–3151. https://doi.org/10.1080/01431161.2010.541518
  49. Grytsai, A. & Milinevsky, G. (2013). SCIAMACHY/Envisat, OMI/Aura, and ground-based total ozone measurements over Kyiv-Goloseyev station. International Journal of Remote Sensing, 34(15), 5611–5622. http://dx.doi.org/10.1080/01431161.2013.794988
  50. Grytsai, A., Grytsai, Z., Evtushevsky, A., & Milinevsky, G. (2005a). Interannual variability of planetary waves in the ozone layer at 65°S. International Journal of Remote Sensing, 26(16), 3377–3387. https://doi.org/10.1080/01431160500076350
  51. Grytsai, A., Grytsai, Z., Evtushevsky, A., Milinevsky, G., & Leonov, N. (2005b). Zonal wave numbers 1–5 in planetary waves from the TOMS total ozone at 65°S. Annales Geophysicae, 23(5), 1565–1573. https://doi.org/10.5194/angeo-23-1565-2005
  52. Grytsai, A. V., Evtushevsky, O. M., Milinevsky, G. P., Grytsai, Z. I., & Agapitov, O. V. (2005c). Longitudinal distribution of total ozone content in edge region of antarctic stratospheric vortex. Space Science and Technology, 11(5–6). https://doi.org/10.15407/knit2005.05.005
  53. Grytsai, A. V., Evtushevsky, O. M., Agapitov, O. V., Klekociuk, A. R., & Milinevsky, G. P. (2007). Structure and longterm change in the zonal asymmetry in Antarctic total ozone during spring. Annales Geophysicae, 25(2), 361–374. https://doi.org/10.5194/angeo-25-361-2007
  54. Grytsai, A. V., Evtushevsky, O. M., & Milinevsky, G. P. (2008). Anomalous quasi-stationary planetary waves over the Antarctic region in 1988 and 2002. Annales Geophysicae, 26(5), 1101–1108. https://doi.org/10.5194/angeo-26-1101-2008
  55. Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., & Stone, K. (2017). Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column. Atmospheric Chemistry and Physics, 17(3), 1741–1758. https://doi.org/10.5194/acp-17-1741-2017
  56. Grytsai, A., Milinevsky, G., Andrienko, Yu., Klekociuk, A., Rapoport, Yu., & Ivaniha, O. (2022). Antarctic planetary wave spectrum under different polar vortex conditions in 2019 and 2020 based on total ozone column data. Ukrainian Antarctic Journal, 20(1), 31–43. https://doi.org/10.33275/1727-7485.1.2022.687
  57. Hassler, B., Bodeker, G. E., Solomon, S., & Young, P. J. (2011). Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations. Geophysical Research Letters, 38(1), L01805. https://doi.org/10.1029/2010GL045542
  58. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999– 2049. https://doi.org/10.1002/qj.3803
  59. Hoffmann, C. G., Raffalski, U., Palm, M., Funke, B., Golchert, S. H. W., Hochschild, G., & Notholt, J. (2011). Observation of strato-mesospheric CO above Kiruna with ground-based microwave radiometry–retrieval and satellite comparison. Atmospheric Measurement Techniques, 4(11), 2389–2408. https://doi.org/10.5194/amt-4-2389-2011
  60. Hongming, Y., Yuan, Y., Guirong, T., & Yucheng, Z. (2022). Possible impact of sudden stratospheric warming on the intraseasonal reversal of the temperature over East Asia in winter 2020/21. Atmospheric Research, 268, 106016. https://doi.org/10.1016/j.atmosres.2022.106016
  61. Hu, J., Ren, R., & Xu, H. (2014). Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. Journal of the Atmospheric Sciences, 71(7), 2319–2334. https://doi.org/10.1175/JAS-D-13-0349.1
  62. Hu, D., Tian, W., Xie, F., Wang, C., & Zhang, J. (2015). Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. Journal of Geophysical Research: Atmospheres, 120(16), 8299–8317. https://doi.org/10.1002/2014JD022855
  63. Huck, P. E., McDonald, A. J., Bodeker, G. E., & Struthers, H. (2005). Interannual variability in Antarctic ozone depletion controlled by planetary waves and polar temperature. Geophysical Research Letters, 32(13), L13819. https://doi.org/10.1029/2005GL022943
  64. Huret, N., Pirre, M., Hauchecorne, A., Robert, C., & Catoire, V. (2006). On the vertical structure of the stratosphere at midlatitudes during the first stage of the polar vortex formation and in the polar region in the presence of a large mesospheric descent. Journal of Geophysical Research: Atmospheres, 111(D6), D06111. https://doi.org/10.1029/2005JD006102
  65. Ivaniha, O. (2020). Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data. Ukrainian Antarctic Journal, 1, 41–55. https://doi.org/10.33275/1727-7485.1.2020.378
  66. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., ... & Joseph, D. (1996). The NCEP–NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  67. Karpechko, A. Yu., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., & Vitart, F. (2018). Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophysical Research Letters, 45(24), 13538–13546. https://doi.org/10.1029/2018GL081091
  68. Keller, J. D., & Wahl, S. (2021). Representation of climate in reanalyses: An intercomparison for Europe and North America. Journal of Climate, 34(5), 1667–1684. https://doi.org/10.1175/JCLI-D-20-0609.1
  69. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van der Dool, H., Jenne, R., & Fiorino, M. (2001). The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD–ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247–268. https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2
  70. Kodera, K., Mukougawa, H., Maury, P., Ueda, M., & Claud, C. (2016). Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. Journal of Geophysical Research: Atmospheres, 121(1), 80–94. https://doi.org/10.1002/2015JD023359
  71. Kravchenko, V., Evtushevsky, A., Grytsai, A., Milinevsky G., & Shanklin, J. (2009). Total ozone dependence of the difference between the empirically corrected EP-TOMS and high-latitude station datasets. International Journal of Remote Sensing, 30(15–16), 4283–4294. https://doi.org/10.1080/01431160902825008
  72. Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., & Grytsai, Z. I. (2012). Quasi-stationary Planetary Waves in Late Winter Antarctic Stratosphere Temperature as a Possible Indicator of Spring Total Ozone. Atmospheric Chemistry and Physics, 12(6), 2865–2879. https://doi.org/10.5194/acp-12-2865-2012
  73. Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Milinevsky, G. P., & Klekociuk, A. R. (2018). Preconditions for the ozone hole decrease in 2017. Ukrainian Journal of Remote Sensing, 18, 5358. https://doi.org/10.36023/ujrs.2018.18.130
  74. Kvissel, O. K., Orsolini, Y. J., Stordal, F., Limpasuvan, V., Richter, J., & Marsh, D. R. (2012). Mesospheric intrusion and anomalous chemistry during and after a major stratospheric sudden warming. Journal of Atmospheric and Solar-Terrestrial Physics, 78–79, 116–124. https://doi.org/10.1016/j.jastp.2011.08.015
  75. Lee, S. H., & Butler, A. H. (2020). The 2018–2019 Arctic stratospheric polar vortex. Weather, 75(2), 52–57. https://doi.org/10.1002/wea.3643
  76. Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J., Bhartia, P. K., Tamminen, J., de Haan, J. F., & Veefkind, J. P. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1199–1208. https://doi.org/10.1109/TGRS.2006.872336
  77. Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., & Smith, A. K. (2016). On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. Journal of Geophysical Research: Atmospheres, 121(9), 4518–4537. https://doi.org/10.1002/2015JD024401
  78. Lin, P., Fu, Q., Solomon, S., & Wallace, J. M. (2009). Temperature trend patterns in Southern Hemisphere high latitudes: Novel indicators of stratospheric change. Journal of Climate, 22(23), 6325–6341. https://doi.org/10.1175/2009JCLI2971.1
  79. Liu, G., Hirooka, T., Eguchi, N., & Krüger, K. (2022). Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019. Atmospheric Chemistry and Physics, 22(5), 3493–3505. https://doi.org/10.5194/acp-22-3493-2022
  80. Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., Lambert, A., Millán Valle, L. F., Pumphrey, H. C., Manney, G. L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., & Lay, R. R. (2022). Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 5.0x Level 2 and 3 data quality and description document. Version 5.0x–1.1a (JPL D-105336 Rev. B.). Jet Propulsion Laboratory, California Institute of Technology. https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf
  81. Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., & Livesey, N. J. (2009). Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophysical Research Letters, 36(12), L12815. https://doi.org/10.1029/2009GL038586
  82. Manney, G. L., Lawrence, Z. D., Santee, M. L., Livesey, N. J., Lambert, A., & Pitts, M. C. (2015). Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013. Atmospheric Chemistry and Physics, 15(10), 5381–5403. https://doi.org/10.5194/acp-15-5381-2015
  83. McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer, C. G., Seftor, C. J., Jaross, G., Torres, O., Moy, L., Labow, G., Byerly, W., Taylor, S. L., Swissler, T., & Cebula, R. P. (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Technical Publication 1998-206895). National Aeronautics and Space Administration. Goddard Space Flight Center Greenbelt, Maryland.
  84. McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J. P., Bhartia, P. K., & Levelt, P. F. (2008). Validation of the Aura Ozone Monitoring Instrument total column ozone product. Journal of Geophysical Research: Atmospheres, 113(D15), D15S14. https://doi.org/10.1029/2007JD008802
  85. Milinevsky, G. P., Danylevsky, V. O., Grytsai, A. V., Evtushevsky, O. M., Kravchenko, V. O., Bovchaliuk, A. P., Bovchaliuk, V. P., Sosonkin, M. G., Goloub, Ph., Savitska, L. Y., Udodov, E. V., & Voytenko, V. P. (2012). Recent developments of atmospheric research in Ukraine. Advances in Astronomy and Space Physics, 2(2), 114–120.
  86. Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., & Ivaniha, O. (2020). Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. International Journal of Remote Sensing, 41(19), 7530–7540. https://doi.org/10.1080/2150704X.2020.1763497
  87. Milinevsky, G. P., Grytsai, A. V., Evtushevsky, O. M., & Klekociuk, A. R. (2022). Contributions to understanding climate in teractions: stratospheric ozone. Akademperiodyka. https://doi.org/10.15407/academperiodyka.252.471
  88. Orsolini, Y. J., Limpasuvan, V., Pérot, K., Espy, P., Hibbins, R., Lossow, S., Larsson, K. R., & Murtagh, D. (2017). Modelling the descent of nitric oxide during the elevated stratopause event of January 2013. Journal of atmospheric and Solar-Terrestrial Physics, 155, 50–61. https://doi.org/10.1016/j.jastp.2017.01.006
  89. Pinsky, M. A. (2009). Introduction to Fourier analysis and wavelets. American Mathematical Society. http://dx.doi.org/10.1090/gsm/102
  90. Piters, A. J. M., Bramstedt, K., Lambert, J.-C., & Kirchhoff, B. (2006). Overview of SCIAMACHY validation: 2002–2004. Atmospheric Chemistry and Physics, 6, 127–148. https://doi.org/10.5194/acp-6-127-2006
  91. Randel, W. J., Wu, F., & Stolarski, R. (2002). Changes in column ozone correlated with the stratospheric EP flux. Journal of the Meteorological Society of Japan. Ser. II, 80(4B), 849–862. https://doi.org/10.2151/jmsj.80.849
  92. Rao, J., Ren, R., Chen, H., Yu, Y., & Zhou, Y. (2018). The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. Journal of Geophysical Research: Atmospheres, 123(23), 13332–13345. https://doi.org/10.1029/2018JD028908
  93. Rüfenacht, R., Kämpfer, N., & Murk, A. (2012). First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmospheric Measurement Techniques, 5(11), 2647–2659. https://doi.org/10.5194/amt-5-2647-2012
  94. Ryan, N. J., Kinnison, D. E., Garcia, R. R., Hoffmann, C. G., Palm, M., Raffalski, U., & Notholt, J. (2018). Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. Atmospheric Chemistry and Physics, 18(3), 1457–1474. https://doi.org/10.5194/acp-18-1457-2018
  95. Salby, M. L. (1982). Sampling theory for asynoptic satellite observations. Part II: Fast fourier synoptic mapping. Journal of the Atmospheric Sciences, 39(11), 2601–2614. https://doi.org/10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2
  96. Salby, M. L., Titova, E. A., & Deschamps, L. (2012). Changes of the Antarctic ozone hole: controlling mechanisms, seasonal predictability, and evolution. Journal of Geophysical Research: Atmospheres, 117(D10), D10111. https://doi.org/10.1029/2011JD016285
  97. Salmi, S.-M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Yu., & Seppälä, A. (2011). Mesosphere- to-stratosphere descent of odd nitrogen in February–March 2009 after sudden stratospheric warming. Atmospheric Chemistry and Physics, 11(10), 4645–4655. https://doi.org/10.5194/acp-11-4645-2011
  98. Scheffler, J., Ayarzagüena, B., Orsolini, Y. J., & Langematz, U. (2022). Elevated stratopause events in the current and a future climate: A chemistry-climate model study. Journal of Atmospheric and Solar-Terrestrial Physics, 227, 105804. https://doi.org/10.1016/j.jastp.2021.105804
  99. Schoeberl, M. R. (1978). Stratospheric warmings: Observations and theory. Reviews of Geophysics, 16(4), 521–538. https://doi.org/10.1029/RG016i004p00521
  100. Shi, Y., Evtushevsky, O., Shulga, V., Milinevsky, G., Klekociuk, A., Andrienko, Y., & Han, W. (2021). Mid-latitude mesospheric zonal wave 1 and wave 2 in recent boreal winters. Remote Sensing, 13(18), 3749. https://doi.org/10.3390/rs13183749
  101. Shi, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Han, W., Ivaniha, O., Andrienko, Y., Shulga, V., & Zhang, C. (2022). Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sensing, 14(6), 1496. https://doi.org/10.3390/rs14061496
  102. Shi, Y., Shulga, V., Ivaniha, O., Wang, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Patoka, A., Han, W., & Shulga, D. (2020). Comparison of major sudden stratospheric warming impacts on the mid-latitude mesosphere based on local microwave radiometer CO observations in 2018 and 2019. Remote Sensing, 12(23), 3950. https://doi.org/10.3390/rs12233950
  103. Siddaway, J., Klekociuk, A., Alexander, S.P., Grytsai, A., Milinevsky, G., Dargaville, R., Ivaniha, O., & Evtushevsky, O. (2020). Assessment of the zonal asymmetry trend in Antarctic total ozone column using TOMS measurements and CCMVal-2 models. Ukrainian Antarctic Journal, 2, 50–58. https://doi.org/10.33275/1727-7485.2.2020.652
  104. Slivinski, L. C., Compo, G. P., Sardeshmukh, P. D., Whitaker, J. S., McColl, C., Allan, R. J., Brohan, P., Yin, X., Smith, C. A., Spencer, L. J., Vose, R. S., Rohrer, M., Conroy, R. P., Schuster, D. C., Kennedy, J. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., ... & Wyszyński, P. (2021). An evaluation of the performance of the Twentieth Century Reanalysis Version 3. Journal of Climate, 34(4), 1417–1438. https://doi.org/10.1175/JCLI-D-20-0505.1
  105. Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37(3), 275–316. https://doi.org/10.1029/1999RG900008
  106. Solomon, S., Garcia, R. R., Olivero, J. J., Bevilacqua, R. M., Schwartz, P. R., Clancy, R. T., & Muhleman, D. O. (1985). Photochemistry and transport of carbon monoxide in the middle atmosphere. Journal of the Atmospheric Sciences, 42(10), 1072–1083. https://doi.org/10.1175/1520-0469(1985)042<1072:PATOCM>2.0.CO;2
  107. Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., & Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science, 353(6296), 269–274. https://doi.org/10.1126/science.aae0061
  108. Staehelin, J., Petropavlovskikh, I., De Mazière, M., & Godin-Beekmann, S. (2018). The role and performance of groundbased networks in tracking the evolution of the ozone layer. Comptes Rendus Geoscience, 350(7), 354–367. https://doi.org/10.1016/j.crte.2018.08.007
  109. Taguchi, M. (2018). Comparison of subseasonal-to-seasonal model forecasts for major stratospheric sudden warmings. Journal of Geophysical Research: Atmospheres, 123(18), 10231–10247. https://doi.org/10.1029/2018jd028755
  110. Tanaka, D., Iwasaki, T., Uno, S., Ujiie, M., & Miyazaki, K. (2004). Eliassen–Palm flux diagnosis based on isentropic representation. Journal of the Atmospheric Sciences, 61(19), 2370–2383. https://doi.org/10.1175/1520-0469(2004)061<2370:EFDBOI>2.0.CO;2
  111. Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., & Riese, M. (2015). Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere. Atmospheric Chemistry and Physics, 15(15), 8695–8715. https://doi.org/10.5194/acp-15-8695-2015
  112. Teng, H., & Branstator, G. (2012). A zonal wave number 3 pattern of northern hemisphere wintertime planetary wave variability at high latitudes. Journal of Climate, 25(19), 6756–6769. https://doi.org/10.1175/JCLI-D-11-00664.1
  113. Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Cheung, J. C. H., Eckermann, S. D., Gerber, E., Jackson, D. R., Kuroda, Yu., Lang, A., McLay, J., Mizuta, R., Reynolds, C., Roff, G., Sigmond, M., Son, S.-W., & Stockdale, T. (2016). Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Monthly Weather Review, 144(5), 1935–1960. https://doi.org/10.1175/mwr-d-15-0010.1
  114. Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann, S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y., Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., & Son, S.-W. (2015). The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quarterly Journal of the Royal Meteorological Society. Part B, 141(689), 987–1003. https://doi.org/10.1002/qj.2432
  115. van der A, R. J., Allaart, M. A. F., & Eskes, H. J. (2010). Multisensor reanalysis of total ozone. Atmospheric Chemistry and Physics, 10(22), 11277–11294. https://doi.org/10.5194/acp-10-11277-2010
  116. Wang, Y., Shulga, V., Milinevsky, G., Patoka, A., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Shulga, D., Myshenko, V., & Antyufeyev, O. (2019). Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmospheric Chemistry and Physics,19(15), 10303–10317. https://doi.org/10.5194/acp-19-10303-2019
  117. Wang, Y., Milinevsky, G., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Antyufeyev, O., Shi, Y., Ivaniha, O., & Shulga, V. (2021). Planetary wave spectrum in the stratosphere–mesosphere during sudden stratospheric warming 2018. Remote Sensing, 13(6), 1190. https://doi.org/10.3390/rs13061190
  118. Wang, H., Dai, Y., Yang, S., Li, T., Luo, J., Sun, B., Duan, M., Ma, J., Yin, Z., & Huang, Y. (2022). Predicting climate anomalies: A real challenge. Atmospheric and Oceanic Science Letters, 15(1), 100115. https://doi.org/10.1016/j.aosl.2021.100115
  119. Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., ... & Walch, M. J. (2006). The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1075–1092. https://doi.org/10.1109/TGRS.2006.873771
  120. Wirth, V. (1993). Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. Journal of Geophysical Research: Atmospheres, 98(D5), 8873–8882. https://doi.org/10.1029/92JD02820
  121. WMO (World Meteorological Organization). (2018). Scientific Assessment of Ozone Depletion: 2018 (Global Ozone Research and Monitoring Project – Report No. 58).
  122. WMO (World Meteorological Organization). (2022). Centennial observing stations: State of recognition Report – 2021 WMO-No. 1296 [Brochure]. https://library.wmo.int/index.php?lvl=notice_display&id=22119#.Y-Ikyy_P3IU
  123. Yang, C., Li, T., Dou, X., & Xue, X. (2015). Signal of central Pacific El Niño in the Southern Hemispheric stratosphere during austral spring. Journal of Geophysical Research: Atmospheres, 120(22), 11438–11450. https://doi.org/10.1002/2015JD023486
  124. Yu, Y., Cai, M., Shi, C., & Ren, R. (2018). On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events. Monthly Weather Review, 146(9), 2717–2739. https://doi.org/10.1175/MWR-D-18-0110.1
  125. Zhang, C., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Andrienko, Yu., Shulga, V., Han, W., & Shi, Y. (2022a). The annual cycle in mid-latitude stratospheric and mesospheric ozone associated with quasi-stationary wave structure by the MLS data 2011–2020. Remote Sensing, 14(10), 2309. https://doi.org/10.3390/rs14102309
  126. Zhang, C., Grytsai, A., Evtushevsky, O., Milinevsky, G., Andrienko, Y., Shulga, V., Klekociuk, A., Rapoport, Yu., & Han, W. (2022b). Rossby waves in total ozone over the Arctic in 2000–2021. Remote Sensing, 14(9), 2192. https://doi.org/10.3390/rs14092192