Методи обробки та аналізу даних для дослідження стратосферного озону та планетарних хвиль
- MERRA-2,
- візуалізація,
- джерело даних,
- метод,
- озон
- реаналіз ...Більше
Авторське право (c) 2022 Український антарктичний журнал
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Анотація
Ми пропонуємо огляд методів аналізу характеристик планетарних хвиль та джерел даних, використаних в рамках спільних досліджень нашою міжнародною командою. Описано вибрані наземні та супутникові інструменти для вимірювань озону в атмосфері та охарактеризовано можливості реаналізів атмосферних та, зокрема, озонових даних. Показані приклади даних та інструментів для аналізу. Представлена методика спектрального аналізу планетарних хвиль в умовах динамічних змін під час раптових стратосферних потеплінь. Розглянуто короткий опис основних результатів аналізу даних та використання комбінованих методів. Виявлено довготривале зміщення зонального мінімуму озону над Антарктикою на схід у весняні місяці; визначено просторові та часові характеристики віддалених зв’язків між тропічним тепловим джерелом атмосферних збурень та відгуком на них у західній частині антарктичної стратосфери; створено прогнозний індекс для можливого аномального розвитку озонової діри у весняні місяці; охарактеризовано зміни в зональній асиметрії арктичної стратопаузи; визначено особливості річного циклу озону при розгляді зональної асиметрії в його розподілі.
Посилання
- Agosta, E. A., & Canziani, P. O. (2010). Interannual variations in the zonal asymmetry of the subpolar latitudes total ozone column during the austral spring. Geoacta, 35(1), 1–16.
- Allen, D. R., Bevilacqua, R. M., Nedoluha, G. E., Randall, C. E., & Manney, G. L. (2003). Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophysical Research Letters, 30(12), 1599. https://doi.org/10.1029/2003GL017117
- Angot, G., Keckhut, P., Hauchecorne, A., & Claud, C. (2012). Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N). Journal of Geophysical Research: Atmospheres, 117(D21), D21102. https://doi.org/10.1029/2012JD017631
- Antón, M., Koukouli, M. E., Kroon, M., McPeters, R. D., Labow, G. J., Balis, D., & Serrano, A. (2010). Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. Journal of Geophysical Research: Atmospheres, 115(D19), D19305. https://doi.org/10.1029/2010JD014178
- Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 294(5542), 581–584. https://doi.org/10.1126/science.1063315
- Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., & Pedatella, N. M. (2021). Sudden stratospheric warmings. Reviews of Geophysics, 59(1), e2020RG000708. https://doi.org/10.1029/2020RG000708
- Bramstedt, K., Gleason, J., Loyola, D., Thomas, W., Bracher, A., Weber, M., & Burrows, J. P. (2003). Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000. Atmospheric Chemistry and Physics, 3(5), 1409–1419. https://doi.org/10.5194/acp-3-1409-2003
- Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., & Perner, D. (1999). The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results. Journal of the Atmospheric Sciences, 56(2), 151–175. https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
- Butler, A. H., & Gerber, E. P. (2018). Optimizing the definition of a sudden stratospheric warming. Journal of Climate, 31(6), 2337–2344. https://doi.org/10.1175/JCLI-D-17-0648.1
- Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63–76. https://doi.org/10.5194/essd-9-63-2017
- Butler, A. H., Lawrence, Z. D., Lee, S. H., Lillo, S. P., & Long, C. S. (2020). Differences between the 2018 and 2019 stratospheric polar vortex split events. Quarterly Journal of the Royal Meteorological Society, 146 (732), 3503–3521. https://doi.org/10.1002/qj.3858
- Chandran, A., & Collins, R. L. (2014). Stratospheric sudden warming effects on winds and temperature in the middle atmosphere at middle and low latitudes: a study using WACCM. Annales Geophysicae, 32(7), 859–874. https://doi.org/10.5194/angeo-32-859-2014
- Chandran, A., Collins, R. L., Garcia, R. R., & Marsh, D. R. (2011). A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model. Geophysical Research Letters, 38(8), L08804. https://doi.org/10.1029/2010GL046566
- Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L., Yue, J., & de la Torre, L. (2013). A climatology of elevated stratopause events in the whole atmosphere community climate model. Journal of Geophysical Research: Atmospheres, 118(3), 1234–1246. https://doi.org/10.1002/jgrd.50123
- Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. Journal of Climate, 20 (3), 449–469. https://doi.org/10.1175/JCLI3996.1
- Choi, H., Kim, J.-H., Kim, B.-M., & Kim, S.-J. (2021). Observational evidence of distinguishable weather patterns for three types of sudden stratospheric warming during northern winter. Frontiers in Earth Science, 9, 625868. https://doi.org/10.3389/feart.2021.625868
- Chubachi, S. (1984). Preliminary result of ozone observations at Syowa station from February 1982 to January 1983. Memoirs of National Institute of Polar Research Japan, Special issue, 34, 13–19.
- Constantin, A. (2016). Fourier Analysis (London Mathematical Society Student Texts). Volume 1: Theory. Cambridge University Press. https://doi.org/10.1017/CBO9781107358508
- Curbelo, J., Chen, G., & Mechoso, C. R. (2021). Lagrangian analysis of the northern stratospheric polar vortex split in April 2020. Geophysical Research Letters, 48(16), e2021GL093874. https://doi.org/10.1029/2021GL093874
- Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., ... & Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), Part A, 553–597. https://doi.org/10.1002/qj.828
- de la Torre, L., Garcia, R. R., Barriopedro, D., & Chandran, A. (2012). Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Atmospheres, 117(D4), D04110. https://doi.org/10.1029/2011JD016840
- de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., & Kinnison, D. E. (2014). Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming. Geophysical Research Letters, 41(13), 4745–4752. https://doi.org/10.1002/2014GL060501
- Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bednarz, E. M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S. C., Hassler, B., Horowitz, L. W., ... & Zeng, G. (2018). Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 18(11), 8409–8438. https://doi.org/10.5194/acp-18-8409-2018
- Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiocco, G., Fiorucci, I., & Fuà, D. (2010). Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and millimeter-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland. Journal of Geophysical Research: Atmospheres, 115(D24), D24315. https://doi.org/10.1029/2010JD014070
- Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., & Rodrigues, L. R. L. (2013). Seasonal climate predictability and forecasting: status and prospects. WIREs (Wiley Interdisciplinary Reviews) Climate Change, 4(4), 245–268. https://doi.org/10.1002/wcc.217
- Domeisen, D. I. V., Garfinkel, C. I., & Butler, A. H. (2019). The teleconnection of El Niño Southern Oscillation to the stratosphere. Reviews of Geophysics, 57(1), 5–47. https://doi.org/10.1029/2018RG000596
- Domeisen, D. I. V., Grams, C. M., & Papritz, L. (2020). The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events. Weather and Climate Dynamics, 1(2), 373–388. https://doi.org/10.5194/wcd-1-373-2020
- Dwyer, J. G., & O’Gorman, P. A. (2017). Moist formulations of the Eliassen–Palm flux and their connection to the surface westerlies. Journal of the Atmospheric Sciences, 74(2), 513–530. https://doi.org/10.1175/JAS-D-16-0111.1
- Evans, R. D. (2008). Operations handbook – ozone observations with a Dobson spectrophotometer: Revised 2008, GAW Report No. 183, WMO/TD-No. 1469.
- Evtushevsky, O., Milinevsky, G., Grytsai, A., Kravchenko, V., Grytsai, Z., & Leonov, M. (2008a). Comparison of ground-based Dobson and satellite EP-TOMS total ozone measurements over Vernadsky station, Antarctica, 1996–2005. International Journal of Remote Sensing, 29 (9), 2675–2683. https://doi.org/10.1080/01431160701767591
- Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., & Milinevsky, G. P. (2008b). Total ozone and tropopause zonal asymmetry during the Antarctic spring. Journal of Geophysical Research: Atmospheres, 113(D7), D00B06. https://doi.org/10.1029/2008JD009881
- Evtushevsky, O., Klekociuk, A., Grytsai, A., Milinevsky, G., & Lozitsky, V. (2011). Troposphere and stratosphere influence on tropopause in the polar regions during winter and spring. International Journal of Remote Sensing, 32(11), 3153–3164. http://dx.doi.org/10.1080/01431161.2010.541515
- Evtushevsky, O. M., Kravchenko, V. O., Hood, L. L., & Milinevsky, G. P. (2015). Teleconnection between the central tropical Pacific and the Antarctic stratosphere: spatial patterns and time lags. Climate Dynamics, 44, 1841–1855. https://doi.org/10.1007/s00382-014-2375-2
- Evtushevsky, O. M., Grytsai, A. V., & Milinevsky, G. P. (2019). Decadal changes in the central tropical Pacific teleconnection to the Southern Hemisphere extratropics. Climate Dynamics, 52, 4027–4055. https://doi.org/10.1007/s00382-018-4354-5
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
- Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210. https://doi.org/10.1038/315207a0
- Fleming, E. L., Chandra, S., Barnett, J. J., & Corney, M. (1990). Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Advances in Space Research, 10(12), 11–59. https://doi.org/10.1016/0273-1177(90)90386-E
- Flynn, L., Long, C., Wu, X., Evans, R., Beck, C. T., Petropavlovskikh, I., McConville, G., Yu, W., Zhang, Z., Niu, J., Beach, E., Hao, Y., Pan, C., Sen, B., Novicki, M., Zhou, S., & Seftor, C. (2014). Performance of the Ozone Mapping and Profiler Suite (OMPS) products. Journal of Geophysical Research: Atmospheres, 119(10), 6181–6195. https://doi.org/10.1002/2013JD020467
- Forkman, P., Christensen, O. M., Eriksson, P., Billade, B., Vassilev, V., & Shulga, V. M. (2016). A compact receiver system for simultaneous measurements of mesospheric CO and O3. Geoscientific Instrumentation, Methods and Data Systems 5(1), 27–44. https://doi.org/10.5194/gi-5-27-2016
- France, J. A., & Harvey, V. L. (2013). A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. Journal of Geophysical Research: Atmospheres, 118(5), 2241–2254. https://doi.org/10.1002/jgrd.50218
- Friedel, M., Chiodo, G., Stenke, A., Domeisen, D. I. V., Fueglistaler, S., Anet, J. G., & Peter., T. (2022). Springtime arctic ozone depletion forces northern hemisphere climate anomalies. Nature Geoscience, 15, 541–547. https://doi.org/10.1038/s41561-022-00974-7
- Frith, S. M., Kramarova, N. A., Stolarski, R. S., McPeters, R. D., Bhartia, P. K., & Labow, G. J. (2014). Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set. Journal of Geophysical Research: Atmospheres, 119(16), 9735–9751. https://doi.org/10.1002/2014JD021889
- Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., & Linden, A. (2009). Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 μm non-local thermal equilibrium emissions measured by MIPAS on Envisat. Atmospheric Chemistry and Physics, 9(7), 2387–2411. https://doi.org/10.5194/acp-9-2387-2009
- Gardner, C. S. (2018). Role of wave-induced diffusion and energy flux in the vertical transport of atmospheric constituents in the mesopause region. Journal of Geophysical Research: Atmospheres, 123(12), 6581–6604. https://doi.org/10.1029/2018JD028359
- Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullanther, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., ... & Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1
- Godin-Beekmann, S. (2010). Spatial observation of the ozone layer. Comptes Rendus Geoscience, 342(4–5), 339–348. https://doi.org/10.1016/j.crte.2009.10.012
- Gritsai, Z. I., Evtushevsky, A. M., Leonov, N. A., & Milinevsky, G. P. (2000). Comparison of ground-based TOMS-EP total ozone data for Antarctica and northern midlatitude stations (1996–1999). Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere, 25(5–6), 459–461. https://doi.org/10.1016/S1464-1909(00)00044-7
- Grytsai, A. (2011). Planetary wave peculiarities in Antarctic ozone distribution during 1979–2008. International Journal of Remote Sensing, 32(11), 3139–3151. https://doi.org/10.1080/01431161.2010.541518
- Grytsai, A. & Milinevsky, G. (2013). SCIAMACHY/Envisat, OMI/Aura, and ground-based total ozone measurements over Kyiv-Goloseyev station. International Journal of Remote Sensing, 34(15), 5611–5622. http://dx.doi.org/10.1080/01431161.2013.794988
- Grytsai, A., Grytsai, Z., Evtushevsky, A., & Milinevsky, G. (2005a). Interannual variability of planetary waves in the ozone layer at 65°S. International Journal of Remote Sensing, 26(16), 3377–3387. https://doi.org/10.1080/01431160500076350
- Grytsai, A., Grytsai, Z., Evtushevsky, A., Milinevsky, G., & Leonov, N. (2005b). Zonal wave numbers 1–5 in planetary waves from the TOMS total ozone at 65°S. Annales Geophysicae, 23(5), 1565–1573. https://doi.org/10.5194/angeo-23-1565-2005
- Grytsai, A. V., Evtushevsky, O. M., Milinevsky, G. P., Grytsai, Z. I., & Agapitov, O. V. (2005c). Longitudinal distribution of total ozone content in edge region of antarctic stratospheric vortex. Space Science and Technology, 11(5–6). https://doi.org/10.15407/knit2005.05.005
- Grytsai, A. V., Evtushevsky, O. M., Agapitov, O. V., Klekociuk, A. R., & Milinevsky, G. P. (2007). Structure and longterm change in the zonal asymmetry in Antarctic total ozone during spring. Annales Geophysicae, 25(2), 361–374. https://doi.org/10.5194/angeo-25-361-2007
- Grytsai, A. V., Evtushevsky, O. M., & Milinevsky, G. P. (2008). Anomalous quasi-stationary planetary waves over the Antarctic region in 1988 and 2002. Annales Geophysicae, 26(5), 1101–1108. https://doi.org/10.5194/angeo-26-1101-2008
- Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., & Stone, K. (2017). Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column. Atmospheric Chemistry and Physics, 17(3), 1741–1758. https://doi.org/10.5194/acp-17-1741-2017
- Grytsai, A., Milinevsky, G., Andrienko, Yu., Klekociuk, A., Rapoport, Yu., & Ivaniha, O. (2022). Antarctic planetary wave spectrum under different polar vortex conditions in 2019 and 2020 based on total ozone column data. Ukrainian Antarctic Journal, 20(1), 31–43. https://doi.org/10.33275/1727-7485.1.2022.687
- Hassler, B., Bodeker, G. E., Solomon, S., & Young, P. J. (2011). Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations. Geophysical Research Letters, 38(1), L01805. https://doi.org/10.1029/2010GL045542
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999– 2049. https://doi.org/10.1002/qj.3803
- Hoffmann, C. G., Raffalski, U., Palm, M., Funke, B., Golchert, S. H. W., Hochschild, G., & Notholt, J. (2011). Observation of strato-mesospheric CO above Kiruna with ground-based microwave radiometry–retrieval and satellite comparison. Atmospheric Measurement Techniques, 4(11), 2389–2408. https://doi.org/10.5194/amt-4-2389-2011
- Hongming, Y., Yuan, Y., Guirong, T., & Yucheng, Z. (2022). Possible impact of sudden stratospheric warming on the intraseasonal reversal of the temperature over East Asia in winter 2020/21. Atmospheric Research, 268, 106016. https://doi.org/10.1016/j.atmosres.2022.106016
- Hu, J., Ren, R., & Xu, H. (2014). Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. Journal of the Atmospheric Sciences, 71(7), 2319–2334. https://doi.org/10.1175/JAS-D-13-0349.1
- Hu, D., Tian, W., Xie, F., Wang, C., & Zhang, J. (2015). Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. Journal of Geophysical Research: Atmospheres, 120(16), 8299–8317. https://doi.org/10.1002/2014JD022855
- Huck, P. E., McDonald, A. J., Bodeker, G. E., & Struthers, H. (2005). Interannual variability in Antarctic ozone depletion controlled by planetary waves and polar temperature. Geophysical Research Letters, 32(13), L13819. https://doi.org/10.1029/2005GL022943
- Huret, N., Pirre, M., Hauchecorne, A., Robert, C., & Catoire, V. (2006). On the vertical structure of the stratosphere at midlatitudes during the first stage of the polar vortex formation and in the polar region in the presence of a large mesospheric descent. Journal of Geophysical Research: Atmospheres, 111(D6), D06111. https://doi.org/10.1029/2005JD006102
- Ivaniha, O. (2020). Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data. Ukrainian Antarctic Journal, 1, 41–55. https://doi.org/10.33275/1727-7485.1.2020.378
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., ... & Joseph, D. (1996). The NCEP–NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
- Karpechko, A. Yu., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., & Vitart, F. (2018). Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophysical Research Letters, 45(24), 13538–13546. https://doi.org/10.1029/2018GL081091
- Keller, J. D., & Wahl, S. (2021). Representation of climate in reanalyses: An intercomparison for Europe and North America. Journal of Climate, 34(5), 1667–1684. https://doi.org/10.1175/JCLI-D-20-0609.1
- Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van der Dool, H., Jenne, R., & Fiorino, M. (2001). The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD–ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247–268. https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2
- Kodera, K., Mukougawa, H., Maury, P., Ueda, M., & Claud, C. (2016). Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. Journal of Geophysical Research: Atmospheres, 121(1), 80–94. https://doi.org/10.1002/2015JD023359
- Kravchenko, V., Evtushevsky, A., Grytsai, A., Milinevsky G., & Shanklin, J. (2009). Total ozone dependence of the difference between the empirically corrected EP-TOMS and high-latitude station datasets. International Journal of Remote Sensing, 30(15–16), 4283–4294. https://doi.org/10.1080/01431160902825008
- Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., & Grytsai, Z. I. (2012). Quasi-stationary Planetary Waves in Late Winter Antarctic Stratosphere Temperature as a Possible Indicator of Spring Total Ozone. Atmospheric Chemistry and Physics, 12(6), 2865–2879. https://doi.org/10.5194/acp-12-2865-2012
- Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Milinevsky, G. P., & Klekociuk, A. R. (2018). Preconditions for the ozone hole decrease in 2017. Ukrainian Journal of Remote Sensing, 18, 5358. https://doi.org/10.36023/ujrs.2018.18.130
- Kvissel, O. K., Orsolini, Y. J., Stordal, F., Limpasuvan, V., Richter, J., & Marsh, D. R. (2012). Mesospheric intrusion and anomalous chemistry during and after a major stratospheric sudden warming. Journal of Atmospheric and Solar-Terrestrial Physics, 78–79, 116–124. https://doi.org/10.1016/j.jastp.2011.08.015
- Lee, S. H., & Butler, A. H. (2020). The 2018–2019 Arctic stratospheric polar vortex. Weather, 75(2), 52–57. https://doi.org/10.1002/wea.3643
- Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J., Bhartia, P. K., Tamminen, J., de Haan, J. F., & Veefkind, J. P. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1199–1208. https://doi.org/10.1109/TGRS.2006.872336
- Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., & Smith, A. K. (2016). On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. Journal of Geophysical Research: Atmospheres, 121(9), 4518–4537. https://doi.org/10.1002/2015JD024401
- Lin, P., Fu, Q., Solomon, S., & Wallace, J. M. (2009). Temperature trend patterns in Southern Hemisphere high latitudes: Novel indicators of stratospheric change. Journal of Climate, 22(23), 6325–6341. https://doi.org/10.1175/2009JCLI2971.1
- Liu, G., Hirooka, T., Eguchi, N., & Krüger, K. (2022). Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019. Atmospheric Chemistry and Physics, 22(5), 3493–3505. https://doi.org/10.5194/acp-22-3493-2022
- Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., Lambert, A., Millán Valle, L. F., Pumphrey, H. C., Manney, G. L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., & Lay, R. R. (2022). Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 5.0x Level 2 and 3 data quality and description document. Version 5.0x–1.1a (JPL D-105336 Rev. B.). Jet Propulsion Laboratory, California Institute of Technology. https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf
- Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., & Livesey, N. J. (2009). Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophysical Research Letters, 36(12), L12815. https://doi.org/10.1029/2009GL038586
- Manney, G. L., Lawrence, Z. D., Santee, M. L., Livesey, N. J., Lambert, A., & Pitts, M. C. (2015). Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013. Atmospheric Chemistry and Physics, 15(10), 5381–5403. https://doi.org/10.5194/acp-15-5381-2015
- McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer, C. G., Seftor, C. J., Jaross, G., Torres, O., Moy, L., Labow, G., Byerly, W., Taylor, S. L., Swissler, T., & Cebula, R. P. (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Technical Publication 1998-206895). National Aeronautics and Space Administration. Goddard Space Flight Center Greenbelt, Maryland.
- McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J. P., Bhartia, P. K., & Levelt, P. F. (2008). Validation of the Aura Ozone Monitoring Instrument total column ozone product. Journal of Geophysical Research: Atmospheres, 113(D15), D15S14. https://doi.org/10.1029/2007JD008802
- Milinevsky, G. P., Danylevsky, V. O., Grytsai, A. V., Evtushevsky, O. M., Kravchenko, V. O., Bovchaliuk, A. P., Bovchaliuk, V. P., Sosonkin, M. G., Goloub, Ph., Savitska, L. Y., Udodov, E. V., & Voytenko, V. P. (2012). Recent developments of atmospheric research in Ukraine. Advances in Astronomy and Space Physics, 2(2), 114–120.
- Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., & Ivaniha, O. (2020). Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. International Journal of Remote Sensing, 41(19), 7530–7540. https://doi.org/10.1080/2150704X.2020.1763497
- Milinevsky, G. P., Grytsai, A. V., Evtushevsky, O. M., & Klekociuk, A. R. (2022). Contributions to understanding climate in teractions: stratospheric ozone. Akademperiodyka. https://doi.org/10.15407/academperiodyka.252.471
- Orsolini, Y. J., Limpasuvan, V., Pérot, K., Espy, P., Hibbins, R., Lossow, S., Larsson, K. R., & Murtagh, D. (2017). Modelling the descent of nitric oxide during the elevated stratopause event of January 2013. Journal of atmospheric and Solar-Terrestrial Physics, 155, 50–61. https://doi.org/10.1016/j.jastp.2017.01.006
- Pinsky, M. A. (2009). Introduction to Fourier analysis and wavelets. American Mathematical Society. http://dx.doi.org/10.1090/gsm/102
- Piters, A. J. M., Bramstedt, K., Lambert, J.-C., & Kirchhoff, B. (2006). Overview of SCIAMACHY validation: 2002–2004. Atmospheric Chemistry and Physics, 6, 127–148. https://doi.org/10.5194/acp-6-127-2006
- Randel, W. J., Wu, F., & Stolarski, R. (2002). Changes in column ozone correlated with the stratospheric EP flux. Journal of the Meteorological Society of Japan. Ser. II, 80(4B), 849–862. https://doi.org/10.2151/jmsj.80.849
- Rao, J., Ren, R., Chen, H., Yu, Y., & Zhou, Y. (2018). The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. Journal of Geophysical Research: Atmospheres, 123(23), 13332–13345. https://doi.org/10.1029/2018JD028908
- Rüfenacht, R., Kämpfer, N., & Murk, A. (2012). First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmospheric Measurement Techniques, 5(11), 2647–2659. https://doi.org/10.5194/amt-5-2647-2012
- Ryan, N. J., Kinnison, D. E., Garcia, R. R., Hoffmann, C. G., Palm, M., Raffalski, U., & Notholt, J. (2018). Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. Atmospheric Chemistry and Physics, 18(3), 1457–1474. https://doi.org/10.5194/acp-18-1457-2018
- Salby, M. L. (1982). Sampling theory for asynoptic satellite observations. Part II: Fast fourier synoptic mapping. Journal of the Atmospheric Sciences, 39(11), 2601–2614. https://doi.org/10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2
- Salby, M. L., Titova, E. A., & Deschamps, L. (2012). Changes of the Antarctic ozone hole: controlling mechanisms, seasonal predictability, and evolution. Journal of Geophysical Research: Atmospheres, 117(D10), D10111. https://doi.org/10.1029/2011JD016285
- Salmi, S.-M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Yu., & Seppälä, A. (2011). Mesosphere- to-stratosphere descent of odd nitrogen in February–March 2009 after sudden stratospheric warming. Atmospheric Chemistry and Physics, 11(10), 4645–4655. https://doi.org/10.5194/acp-11-4645-2011
- Scheffler, J., Ayarzagüena, B., Orsolini, Y. J., & Langematz, U. (2022). Elevated stratopause events in the current and a future climate: A chemistry-climate model study. Journal of Atmospheric and Solar-Terrestrial Physics, 227, 105804. https://doi.org/10.1016/j.jastp.2021.105804
- Schoeberl, M. R. (1978). Stratospheric warmings: Observations and theory. Reviews of Geophysics, 16(4), 521–538. https://doi.org/10.1029/RG016i004p00521
- Shi, Y., Evtushevsky, O., Shulga, V., Milinevsky, G., Klekociuk, A., Andrienko, Y., & Han, W. (2021). Mid-latitude mesospheric zonal wave 1 and wave 2 in recent boreal winters. Remote Sensing, 13(18), 3749. https://doi.org/10.3390/rs13183749
- Shi, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Han, W., Ivaniha, O., Andrienko, Y., Shulga, V., & Zhang, C. (2022). Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sensing, 14(6), 1496. https://doi.org/10.3390/rs14061496
- Shi, Y., Shulga, V., Ivaniha, O., Wang, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Patoka, A., Han, W., & Shulga, D. (2020). Comparison of major sudden stratospheric warming impacts on the mid-latitude mesosphere based on local microwave radiometer CO observations in 2018 and 2019. Remote Sensing, 12(23), 3950. https://doi.org/10.3390/rs12233950
- Siddaway, J., Klekociuk, A., Alexander, S.P., Grytsai, A., Milinevsky, G., Dargaville, R., Ivaniha, O., & Evtushevsky, O. (2020). Assessment of the zonal asymmetry trend in Antarctic total ozone column using TOMS measurements and CCMVal-2 models. Ukrainian Antarctic Journal, 2, 50–58. https://doi.org/10.33275/1727-7485.2.2020.652
- Slivinski, L. C., Compo, G. P., Sardeshmukh, P. D., Whitaker, J. S., McColl, C., Allan, R. J., Brohan, P., Yin, X., Smith, C. A., Spencer, L. J., Vose, R. S., Rohrer, M., Conroy, R. P., Schuster, D. C., Kennedy, J. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., ... & Wyszyński, P. (2021). An evaluation of the performance of the Twentieth Century Reanalysis Version 3. Journal of Climate, 34(4), 1417–1438. https://doi.org/10.1175/JCLI-D-20-0505.1
- Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37(3), 275–316. https://doi.org/10.1029/1999RG900008
- Solomon, S., Garcia, R. R., Olivero, J. J., Bevilacqua, R. M., Schwartz, P. R., Clancy, R. T., & Muhleman, D. O. (1985). Photochemistry and transport of carbon monoxide in the middle atmosphere. Journal of the Atmospheric Sciences, 42(10), 1072–1083. https://doi.org/10.1175/1520-0469(1985)042<1072:PATOCM>2.0.CO;2
- Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., & Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science, 353(6296), 269–274. https://doi.org/10.1126/science.aae0061
- Staehelin, J., Petropavlovskikh, I., De Mazière, M., & Godin-Beekmann, S. (2018). The role and performance of groundbased networks in tracking the evolution of the ozone layer. Comptes Rendus Geoscience, 350(7), 354–367. https://doi.org/10.1016/j.crte.2018.08.007
- Taguchi, M. (2018). Comparison of subseasonal-to-seasonal model forecasts for major stratospheric sudden warmings. Journal of Geophysical Research: Atmospheres, 123(18), 10231–10247. https://doi.org/10.1029/2018jd028755
- Tanaka, D., Iwasaki, T., Uno, S., Ujiie, M., & Miyazaki, K. (2004). Eliassen–Palm flux diagnosis based on isentropic representation. Journal of the Atmospheric Sciences, 61(19), 2370–2383. https://doi.org/10.1175/1520-0469(2004)061<2370:EFDBOI>2.0.CO;2
- Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., & Riese, M. (2015). Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere. Atmospheric Chemistry and Physics, 15(15), 8695–8715. https://doi.org/10.5194/acp-15-8695-2015
- Teng, H., & Branstator, G. (2012). A zonal wave number 3 pattern of northern hemisphere wintertime planetary wave variability at high latitudes. Journal of Climate, 25(19), 6756–6769. https://doi.org/10.1175/JCLI-D-11-00664.1
- Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Cheung, J. C. H., Eckermann, S. D., Gerber, E., Jackson, D. R., Kuroda, Yu., Lang, A., McLay, J., Mizuta, R., Reynolds, C., Roff, G., Sigmond, M., Son, S.-W., & Stockdale, T. (2016). Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Monthly Weather Review, 144(5), 1935–1960. https://doi.org/10.1175/mwr-d-15-0010.1
- Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann, S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y., Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., & Son, S.-W. (2015). The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quarterly Journal of the Royal Meteorological Society. Part B, 141(689), 987–1003. https://doi.org/10.1002/qj.2432
- van der A, R. J., Allaart, M. A. F., & Eskes, H. J. (2010). Multisensor reanalysis of total ozone. Atmospheric Chemistry and Physics, 10(22), 11277–11294. https://doi.org/10.5194/acp-10-11277-2010
- Wang, Y., Shulga, V., Milinevsky, G., Patoka, A., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Shulga, D., Myshenko, V., & Antyufeyev, O. (2019). Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmospheric Chemistry and Physics,19(15), 10303–10317. https://doi.org/10.5194/acp-19-10303-2019
- Wang, Y., Milinevsky, G., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Antyufeyev, O., Shi, Y., Ivaniha, O., & Shulga, V. (2021). Planetary wave spectrum in the stratosphere–mesosphere during sudden stratospheric warming 2018. Remote Sensing, 13(6), 1190. https://doi.org/10.3390/rs13061190
- Wang, H., Dai, Y., Yang, S., Li, T., Luo, J., Sun, B., Duan, M., Ma, J., Yin, Z., & Huang, Y. (2022). Predicting climate anomalies: A real challenge. Atmospheric and Oceanic Science Letters, 15(1), 100115. https://doi.org/10.1016/j.aosl.2021.100115
- Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., ... & Walch, M. J. (2006). The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1075–1092. https://doi.org/10.1109/TGRS.2006.873771
- Wirth, V. (1993). Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. Journal of Geophysical Research: Atmospheres, 98(D5), 8873–8882. https://doi.org/10.1029/92JD02820
- WMO (World Meteorological Organization). (2018). Scientific Assessment of Ozone Depletion: 2018 (Global Ozone Research and Monitoring Project – Report No. 58).
- WMO (World Meteorological Organization). (2022). Centennial observing stations: State of recognition Report – 2021 WMO-No. 1296 [Brochure]. https://library.wmo.int/index.php?lvl=notice_display&id=22119#.Y-Ikyy_P3IU
- Yang, C., Li, T., Dou, X., & Xue, X. (2015). Signal of central Pacific El Niño in the Southern Hemispheric stratosphere during austral spring. Journal of Geophysical Research: Atmospheres, 120(22), 11438–11450. https://doi.org/10.1002/2015JD023486
- Yu, Y., Cai, M., Shi, C., & Ren, R. (2018). On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events. Monthly Weather Review, 146(9), 2717–2739. https://doi.org/10.1175/MWR-D-18-0110.1
- Zhang, C., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Andrienko, Yu., Shulga, V., Han, W., & Shi, Y. (2022a). The annual cycle in mid-latitude stratospheric and mesospheric ozone associated with quasi-stationary wave structure by the MLS data 2011–2020. Remote Sensing, 14(10), 2309. https://doi.org/10.3390/rs14102309
- Zhang, C., Grytsai, A., Evtushevsky, O., Milinevsky, G., Andrienko, Y., Shulga, V., Klekociuk, A., Rapoport, Yu., & Han, W. (2022b). Rossby waves in total ozone over the Arctic in 2000–2021. Remote Sensing, 14(9), 2192. https://doi.org/10.3390/rs14092192