Ukrainian Antarctic Journal

No 16 (2017): Ukrainian Antarctic Journal
Articles

Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands

E. L. Kordyum
M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv, 01601, Ukraine
O. M. Nedukha
M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv, 01601, Ukraine
Y. V. Ovcharenko
M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv, 01601, Ukraine
S. I. Jadko
M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv, 01601, Ukraine
G. F. Ivanenko
M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv, 01601, Ukraine
V. V. Loya
M. M. Gryshko National Botanic Garden, National Academy of Sciences of Ukraine, 1 Timiryazevska Str., Kyiv, 01014, Ukraine
Published December 29, 2017
Keywords
  • Deschampsia antarctica,
  • anatomical structure,
  • ultrastructure,
  • lipid peroxidation,
  • lignin,
  • adaptation
  • ...More
    Less
How to Cite
Kordyum, E. L., Nedukha, O. M., Ovcharenko, Y. V., Jadko, S. I., Ivanenko, G. F., & Loya, V. V. (2017). Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands. Ukrainian Antarctic Journal, (16), 143-149. https://doi.org/10.33275/1727-7485.16.2017.72

Abstract

The objective of the work was to perform the comparative studies of the anatomical structure and reactive oxygen species (ROS) content in leaves of Deschampsia antarctica plants growing in extreme climatic conditions of Antarctica (Skua and Galindez Іslands). The leaf anatomy and surface ultrastructure were investigated by the methods of light and scanning electron microscopy. To determine the localization of monolignines a cytochemical method of dyeing tissues was used. The ROS content was registered by measuring the spontaneous chemiluminescence (SCL). The obtained results showed the similarity of leaf anatomical and ultrastructural features in plants collected on Scua and Galindez Islands. The localization of two monolignines (syringyl and quaiacyl) detected in leaf cell walls was also similar in the investigated plants. Syringyl is mainly localized in the walls of epidermal cell and quaiacyl is mainly localized in the walls of mesophyll cells and vessels. In epidermal cell walls, the syringyl relative content exceeded the quaiacyl content 6-8 times. The SCL level in D. аntarctica leaves is corresponded to mean values of leaf luminescence in other species under the normal conditions. This may indicate the adaptation of species to harsh habitats. In our opinion, it should be paid special attention on the study of D. аntarctica cell metabolism and its regulation for better understanding the mechanisms of its survival in the conditions of the Maritime Antarctic.

References

  1. Amosova, A. V., Bolsheva, N. L., Samatadze, T. E., Twardovska, M. O., Svyatoslav, A., Zoshchuk, I.O., Badaeva, E. D., Kunakh, V. A., Muravenko, O.V. 2015. Molecular cytogenetic analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLOS. https://doi.org/10.1371/journal.pone.0138878.
  2. Ayala, A., Mucoz, M.F., Argüelles, S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity. ID 360438. https://doi.org/10.1155/2014/360438
  3. Chwedorzewska, K. J., Gielwanowska, I., Szczuka, E., Bochenek, A. 2008. High anatomical and low genetic di-versity in Deschampsia antarctica Desv. from King George Island, the Antarctic. Pol. Polar Res., 29, 377-386.
  4. Dietz, K.-J. 2008. Redox signal integration: from stimulus to networks and genes. Physiol. Plant.,133, 459-468. https://doi.org/10.1111/j.1399-3054.2008.01120.x.
  5. Foyer, C. H., Noctor, N. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant.,119, 355-364. https://doi.org/10.1034/j.1399-3054.2003.00223.x.
  6. Gielwanowska, I., Szczuka, E. 2005. New ultrastructural features of organelles in leaf cells of Deschampsia antarctica Desv. Polar Biol., 28, 951-955. https://doi.org/10.1007/s00300-005-0024-2.
  7. Gielwanowska, I., Szczuka, E., Bednara, J., Gorecki, R. 2005. Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann. Bot., 96, 1109-1119. https://doi.org/10.1093/aob/mci262.
  8. Jadko, S.I. 2012. Ranneye uvelicheniye soderzhaniya aktivnykh form kisloroda I aktivnosti askorbat peroksi-dazy I katalazy v list'yakh Arabidopsis thaliana pri osmoticheskom i oksidativnom stessakh [Early increasing the content of reactive oxygen species and the activity of ascorbate peroxidase and catalase in leaves of Arabidopsis thaliana plants under osmotic and oxidative stresses]. Visnyk Kharkiv. natsionalnogo agrarnogo universytetu. Seriya Bioilogiya.[The Bulletin of Kharkiv National Agrarian University. Ser. Biology]. 3(27), 58-64.
  9. Jadko, S. I. 2015. Histone deacetylase activity and reactive oxygen species content in the tissue culture of Arabidopsis thalianaunder normal conditions and development of acute osmotic stress. Ukr. Biochem. J., 87, 57 - 62. https://doi.org/10.15407/ubj87.03.057.
  10. Kolupaev, Iu.E., Karpets ,Iu.V. 2014. Aktyvnye formy kisloroda i stressovyi syhnalynh u rastenyi [Reactive oxygen species and stress signaling in plants]. Ukr. Biochem. J., 86 (4), 18-35. https://doi.org/10.15407/ubj86.04.018.
  11. Mittler R., Vanderauwera S., Gollery M., Breusegem F.V. 2004. Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490-498. https://doi.org/10.1016/j.tplants.2004.08.009.
  12. Moller, I. M., Sweetlove, L. J. 2010. ROS signaling-specificity is required. Trends Plant Sci., 15, 370-374. https://doi.org/10.1016/j.tplants.2010.04.008.
  13. Romeo, M., Casanova, A., Iturra, G., Reyes ,A., Montenegro, G., Alberdi, M. 1999. Leaf anatomy of Deschampsia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in the growth conditions. Revista Chilena de Historia Natural, 72, 411-425.
  14. Santos, C.V., Rey, P. 2006. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci., 11, 329-334. https://doi.org/10.1016/j.tplants.2006.05.005.
  15. Szczuka, E., Gielwanowska, I., Leszczuk, A., Domaciuk, M., Pietrusiewicz, J., Bednara, J. 2013. Specific ultrastructure of the leaf mesophyll cells of Deschampsia antarctica Desv. (Poaceae). Ann. Univ. Mariae-Curie-Sklodowska, sectio C - Biologia, 68, 25-33. https://doi.org/10.2478/v10067-012-0031-y.
  16. Tarusov B. N., Veselovskii V.A. 1978. Sverkhslabye svechenyia rastenyi i ikh prykladnoe znachenie. Moskva: Izdatelsvo MHU, 151.
  17. Zuciga, G. E., Alberdi, M., Corcuerm, L. 1996. Non-structural carbohydrates in Deschampsia antarctica Desv. from South Shetland islands, Maritime Antarctic. Environ. Experim. Botany, 36. 4., 393-399. https://doi.org/10.1016/S0098-8472(96)01026-X.
  18. Zunica-Feest, A., Inostroza, P., Vega, M., Bravo, L., Corcuera, L.J. 2003. Sugars and enzyme activity in the grass Deschampsia antarctica. Antarctic Science, 15, 483-491. https://doi.org/10.1017/S0954102003001597.