Ukrainian Antarctic Journal

Vol 21 No 1(26) (2023): Ukrainian Antarctic Journal
Articles

Temporal stability of induction vectors from Antarctic Peninsula, AIA INTERMAGNET observatory

S. Sanaka
Institute of Geophysics Polish Academy of Sciences, Warszawa, 01-452, Poland
A. Neska
Institute of Geophysics Polish Academy of Sciences, Warszawa, 01-452, Poland
Published August 16, 2023
Keywords
  • auroral zone,
  • geomagnetic activity,
  • ionospheric currents,
  • magnetotellurics
How to Cite
Sanaka, S., & Neska, A. (2023). Temporal stability of induction vectors from Antarctic Peninsula, AIA INTERMAGNET observatory. Ukrainian Antarctic Journal, 21(1(26), 3-12. https://doi.org/10.33275/1727-7485.1.2023.703

Abstract

Induction vectors represent geomagnetic transfer functions used in magnetotellurics and related passive electromagnetic sounding methods in geophysics. They are obtained from the measurements of geomagnetic variation and carry information on the distribution of local and regional electric resistivity in the subsurface, which can be interpreted in terms of geology and tectonics. The underlying concept of their interpretation works properly if the so-called far-field condition is fulfilled, i.e., if certain assumptions on the geometry of utilized natural electromagnetic source fields are met. The magnetotelluric practitioner expects problems in the regions where the electromagnetic variations originate to a high extent from ionospheric currents as sources. Due to the polar (or auroral) electrojets, this skepticism towards the electromagnetic far-field methods clearly applies to the high latitudes, polar regions, and auroral zones. In the present study, the investigation focuses on the extent to which problems typical for the auroral electrojet sources occur in the geomagnetic variation data from the Argentine Islands INTERMAGNET observatory (AIA) located at the Ukrainian Antarctic Akademik Vernadsky station. Induction vectors from one month of AIA variation data measured in the normal framework of the INTERMAGNET observatory are analysed for their stability over both period and time, where a time resolution of one day allows for the detection of changes originating from the source signals instead of from subsurface resistivity distribution. The outcomes from AIA are compared to the corresponding ones of two northern hemisphere stations which belong to the International Monitor for Auroral Geomagnetic Effects (IMAGE) network, located in Finland and Poland. Results show that AIA induction vectors do not exhibit the problems expected in the high latitudes; their time stability is very similar to that of stations at a comparable but opposite geomagnetic latitude of 50 degrees, which corresponds geographically to mid-latitudes in Europe. A further outcome of this study is that some slight, occasional changes in induction vectors can be attributed to increased geomagnetic activity because they are correlated to the planetary diurnal Ap index.

References

  1. Araya Vargas, J., & Ritter, O. (2016). Source effects in midlatitude geomagnetic transfer functions. Geophysical Journal International, 204(1), 606—630. https://doi.org/10.1093/gji/ggv474
  2. Bury, A. (2020). Temporal variations visible in induction arrows and their spatial distribution — preliminary results. In J. Börner, P. B. M. Yogeshwar, & M. Becken (Eds.), Protokoll über das 28. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: Haltern am See, 23–27 September 2019 (pp. 38–44). https://gfzpublic.gfz-potsdam.de/rest/items/item_5002002/component/file_5002003/content
  3. Chave, A. D. (2014). Magnetotelluric data, stable distributions and impropriety: an existential combination. Geophysical Journal International, 198(1), 622–636. https://doi.org/10.1093/gji/ggu121
  4. Chave, A. D., & Jones, A. G. (2012). The magnetotelluric method: Theory and practice. Cambridge University Press. https://doi.org/10.1017/CBO9781139020138
  5. Chave, A. D., & Thomson, D. J. (2004). Bounded influence magnetotelluric response function estimation. Geophysical Journal International, 157(3), 988–1006. https://doi.org/10.1111/j.1365-246X.2004.02203.x
  6. Egbert, G. D., & Booker, J. R. (1986). Robust estimation of geomagnetic transfer functions. Geophysical Journal International, 87(1), 173–194. https://doi.org/10.1111/j.1365-246X.1986.tb04552.x
  7. Emmert, J. T., Richmond, A. D., & Drob, D. P. (2010). A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors. Journal of Geophysical Research: Space Physics, 115(A8). https://doi.org/10.1029/2010JA015326
  8. Ernst, T., Nowozyński, K., & Jóźwiak, W. (2020). The reduction of source effect for reliable estimation of geomagnetic transfer functions. Geophysical Journal International, 221(1), 415–430. https://doi.org/10.1093/gji/ggaa017
  9. González-Castillo, L., Madarieta-Txurruca, A., Hill, G., Castro, C., Galindo-Zaldívar, J., & Junge, A. (2022). Long period magnetotelluric at the Antarctica: The role of asthenospheric mantle anisotropy in Glacial Isostatic Adjustment. In A. Basokur (Ed.), 25th Electromagnetic Induction Workshop: Cesme, 11–17 September 2022 (p. 311). International Association of Geomagnetism and Aeronomy, Division VI Electromagnetic Induction in the Earth and Planetary Bodies. https://www.emiw.org/fileadmin/emiw2022/abstracts/Book/EMIW_2022_Book_of_Abstracts_11-17-Sept.pdf
  10. Hill, G. J. (2020). On the Use of Electromagnetics for Earth Imaging of the Polar Regions. Surveys in Geophysics, 41, 5–45. https://doi.org/10.1007/s10712-019-09570-8
  11. Maksymchuk, V. Yu., Chobotok, I. O., Klymkovych, T. A., Kuderavets, R. S., Nakalov, E. F., & Otruba, Y. S. (2018). Complex magnetovariational and tectonomagnetic monitoring of recent geodynamics in the Western Slope of the Antarctic Peninsula. Ukrainian Antarctic Journal, 1(17), 3–19. https://doi.org/10.33275/1727-7485.1(17).2018.27
  12. Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. (2021). The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather, 19(5). https://doi.org/10.1029/2020SW002641
  13. Melnyk, G. V., & Bakhmutov, V. G. (2007/2008). The «Academic Vernadskiy» station in the network of the Ukrainian magnetic observatories of INTERMAGNET. Ukrainian Antarctic Journal, 6–7, 66–73. https://doi.org/10.33275/1727-7485.6-7.2008.494
  14. Neska, A. (2006). Remote reference versus signal-noise separation: A least-square based comparison between magnetotelluric processing techniques. PhD thesis. Fachrichtung Geophysik, Freie Universität Berlin. https://refubium.fu-berlin.de/handle/fub188/9007?show=full
  15. Neska, A. (2016). Das magnetische Joch und andere Gründe zur Betrachtung von MT-Quellsignalen. In M. Miensopust, & M. Becken (Eds.), Protokoll über das 26. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: Dassel 21. – 25. September 2015 (pp. 91–101). https://gfzpublic.gfz-potsdam.de/rest/items/item_1579917_2/component/file_1579918/content (In German)
  16. Neska, A. (2019). Non-stationarity in induction arrows derived from IMAGE data [Conference contribution]. 15th IMAGE meeting: Uppsala, 5–6 September 2019. https://space.fmi.fi/image/www/image2019a/presentations/IMAGE2019_Neska.pdf
  17. Neska, A., Reda, J. T., Neska, M. L., & Sumaruk, Yu. P. (2018). On the relevance of source effects in geomagnetic pulsations for induction soundings. Annales Geophysicae, 36, 337–347. https://doi.org/10.5194/angeo-36-337-2018
  18. Nieć, M. (2003). Geo-economic evaluation of vanadiferous titanomagnetite deposits in Suwałki massif in Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 19(2), 5–28. https://gsm.min-pan.krakow.pl/Geo-economic-evaluation-of-vanadiferous-titanomagnetite-deposits-in-Suwalki-massif,96372,0,2.html
  19. Parkinson, W. D. (1962). The influence of continents and oceans on geomagnetic variations. Geophysical Journal International, 6(4), 441–449. https://doi.org/10.1111/j.1365-246X.1962.tb02992.x
  20. Sanaka, S., & Neska, A. (2021). Source effects causing nonstationarity in long term mid latitude magnetotelluric data. In J. Börner, P. Yogeshwar, & M. Grinat (Eds.). Protokoll über das 29. Schmucker- Weidelt-Kolloquium für Elektromagnetische Tiefenforschung virtuell, 29. September – 1. Oktober 2021 (pp. 43–47). https://gfzpublic.gfz-potsdam.de/rest/items/item_ 5010132_2/component/file_5010134/content
  21. Schäfer, A., Houpt, L., Brasse, H., & Hoffmann, N. (2011). The North German Conductivity Anomaly revisited. Geophysical Journal International, 187(1), 85–98. https://doi.org/10.1111/j.1365-246X.2011.05145.x
  22. Simpson, F., & Bahr, K. (2005). Practical magnetotellurics. Cambridge University Press. https://doi.org/10.1017/CBO9780511614095
  23. St-Louis, B. (Ed.). (2020). INTERMAGNET Technical Refe rence Manual, Version 5.0.0. INTERMAGNET Operations Committee and Executive Council. https://intermagnet.github.io/docs/Technical-Manual/technical_manual.pdf
  24. Sumaruk, Yu., Marusenkov, A., Neska, A., Korepanov, V., & Leonov, M. (2022). Increasing the accuracy of absolute measurements at the Argentine Islands geomagnetic observatory of the Ukrainian Antarctic Akademik Vernadsky station. Ukrainian Antarctic Journal, 20(2), 151–163. https://doi.org/10.33275/1727-7485.2.2022.697
  25. Tanskanen, E. I. (2009). A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. Journal of Geophysical Research: Space Physics, 114(A5), A05204. https://doi.org/10.1029/2008JA013682
  26. Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
  27. Wiese, H. (1962). Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Geofisica Pura e Applicata, 52, 83–103. https://doi.org/10.1007/BF01996002 (In German)