Tectonic plates moment of inertia and angular momentum determination: the case of the Antarctic plate
- Earth's crust movements,
- GNSS data,
- mathematical modeling,
- rotation poles
Copyright (c) 2023 Ukrainian Antarctic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
The main goal of this study is to develop and test an algorithm for determining the moment of inertia and angular momentum of a tectonic plate based on the processing of time series of daily solutions of continuous GNSS (Global Navigation Satellite System) stations. The proposed algorithm consists of four consecutive stages: reformatting data to the internal format; dividing the plate into cells and determining their masses; determining the rotation poles and distances from cells to the poles; calculating the plate’s moment of inertia and angular momentum. The algorithm uses freely available time series of daily solutions
from continuous GNSS stations or any other data prepared in a similar format. The algorithm is tested for determining the moment of inertia and angular momentum of the Antarctic plate based on the processing of time series of daily solutions of continuous GNSS stations for the period 1995–2021. It is confirmed that the Antarctic Plate’s rotation poles, moment of inertia, and angular momentum are dynamic parameters. However, additional calculations and in-depth comprehensive analysis are required to determine the causes of such dynamics. As a result of comparing, the dynamics of changes in the Antarctic Plate’s rotation poles partially compensate for the unevenness of the Earth's rotation to keep the angular momentum of the Earth constant.
References
- Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H., & Collilieux, X. (2017). ITRF2014 plate motion model. Geophysical Journal International, 209(3), 1906–1912. https://doi.org/10.1093/gji/ggx136
- Altamimi, Z., Sillard, P., & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research: Solid Earth, 107(B10), ETG 2–1–ETG 2–19. https://doi.org/10.1029/2001jb000561
- Argus, D. F., & Gordon, R. G. (1991). No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophysical Research Letters, 18(11), 2039–2042. https://doi.org/10.1029/91gl01532
- Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11). https://doi.org/10.1029/2011gc003751
- Atanasova-Zlatareva, M. (2014). Research of the horizontal crustal motions, based on GPS Data for the territory of Bulgaria and the Balkans (7093). In Engaging the Challenges – Enhancing the Relevance XXV FIG Congress 2014 in Kuala Lumpur, Malaysia 16–21 June 2014 (pp. 1–11). FIGNET.
- Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001gc000252
- Blewitt, G., Hammond, W. C., & Kreemer, C. (2018). Har nessing the GPS data explosion for interdisciplinary science. Eos, 99. https://doi.org/10.1029/2018EO104623
- Brown, W. K., & Wohletz, K. H. (2007). SFT and the Earth’s Tectonic Plates. Los Alamos National Laboratory. https://www.lanl.gov/orgs/ees/geodynamics/Wohletz/SFT-Tectonics.htm
- Calais, E., Han, J. Y., DeMets, C., & Nocquet, J. M. (2006). Deformation of the North American plate interior from a decade of continuous GPS measurements. Journal of Geophysical Research: Solid Earth, 111(B6). https://doi.org/10.1029/2005jb004253
- Dimitrov, N., & Nakov, R. (2022). GPS Results from long time monitoring of geodynamic processes in South-Western Bulgaria. Applied Sciences, 12(5), 2682. https://doi.org/10.3390/app12052682
- Drewes, H. (2009). The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF. In H. Drewes (Ed.), Geodetic Reference Frames. International Association of Geodesy Symposia (Vol. 134, pp. 95–99). Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00860-3_15
- Euler, L. (1776). Formulae generales pro translation equacunque corporum rigidorum (General formulas for the translation of arbitrary rigid bodies). Novi Commentarii academia escientiarum Petropolitanae, 20, 189–207 (E478). (In Latin)
- Jagoda, M. (2021). Determination of motion parameters of selected major tectonic plates based on GNSS station positions and velocities in the ITRF2014. Sensors, 21(16), 5342. https://doi.org/10.3390/s21165342
- Laske, G., Masters., G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. Geophysical Research Abstracts, 15, Abstract EGU2013-2658.
- Li, Y., Liu, M., Li, Y., & Chen, L. (2019). Active crustal deformation in southeastern Tibetan Plateau: The kinematics and dynamics. Earth and Planetary Science Letters, 523, 115708. https://doi.org/10.1016/j.epsl.2019.07.010
- Lobkovsky, L. I., & Kerchman, V. I. (1991). A two-level concept of plate tectonics: application to geodynamics. Tectonophysics, 199 (2–4), 343–374. https://doi.org/10.1016/0040-1951(91)90178-U
- Marchenko, O. M., Tretyak, K. R., Kylchitskiy, A. Ya., Go lubinka, Yu. I., Marchenko, D. O., & Tretyak, N. P. (2012). Doslidzhennya hravitatsiynoho polya, topohrafiyi okeanu ta rukhiv zemnoyi kory v rehioni Antarktyky [Investigation of the gravitational field, ocean topography and crustal movements in the Antarctic region]. Lviv Polytechnic Publishing House. (In Ukrainian). https://doi.org/10.23939/jgd2012.01.005
- Saria, E., Calais, E., Stamps, D. S., Delvaux, D., & Hartnady, C. J. H. (2014). Present-day kinematics of the East African Rift. Journal of Geophysical Research: Solid Earth, 119(4), 3584–3600. https://doi.org/10.1002/2013JB010901
- Savchyn, I. (2022a). Establishing the correlation between changes of absolute rotation poles of major tectonic plates based on continuous GNSS stations data. Acta Geodynamica et Geomaterialia, 19(2), 167–176. https://doi.org/10.13168/AGG.2022.0006
- Savchyn, I. (2022b). Determination of the recent rotation poles of the main tectonic plates on the base of GNSS data. Geodynamics, 2(33). 17–27. https://doi.org/10.23939/jgd2022.02.017
- Savchyn, I. (2022c). Migration of average annual rotation poles of Antarctic Plate during 1995–2021 by GNSS data. In 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment (Vol. 2022, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2022580045
- Savchyn, I. (2023). Analysis of recent African tectonic plate system kinematics based on GNSS data. Acta Geodynamica et Geomaterialia, 20(2), 19–28. https://doi.org/10.13168/AGG.2023.0003
- Savchyn, I., Brusak, I., & Tretyak, K. (2023). Analysis of recent Antarctic plate kinematics based on GNSS data. Geodesy and Geodynamics, 14(2), 99–110. https://doi.org/10.1016/j.geog.2022.08.004
- Savchyn, I., Tretyak, K., Marusazh, K., & Korliatovych, T. (2021a). Processing and analysis of measurement results of the Ukrainian GNSS station ASAV (Argentina Islands, West Antarctica). In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3032
- Savchyn, І., Otruba, Y., & Tretyak, K. (2021b). The first Ukrainian permanent GNSS station in Antarctica: processing and analysis of observation data. Ukrainian Antarctic Journal, 2, 3–11. https://doi.org/10.33275/1727-7485.2.2021.674
- Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth, 107(B4), ETG 11–1–ETG 11–30. https://doi.org/10.1029/2000jb000033
- Simmons, N. A, Myers, S. C. Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research: Solid Earth, 117(B10). http://dx.doi.org/10.1029/2012JB009525
- Sottili, G., Palladino, D. M., Cuffaro, M., & Doglioni, C. (2015). Earth’s rotation variability triggers explosive eruptions in subduction zones. Earth, Planets and Space, 67(1), 208. https://doi.org/10.1186/s40623-015-0375-z
- Tretyak, K., Al-Alusi, F. K. F., & Babiy, L. (2018). Investigation of the interrelationship between changes and redistribution of angular momentum of the Earth, the Antarctic tectonic plate, the atmosphere, and the ocean. Geodynamics, 1(24), 5–26. https://doi.org/10.23939/jgd2018.01.005
- Vassileva, K., & Atanasova, M. (2014). Study of plate tectonic transition boundaries in Bulgaria from GPS. In Tenth Anniversary Scientific Conference with International Participation SPACE, ECOLOGY, SAFETY 12–14 November 2014, Sofia, Bulgaria (pp. 356–362). Space Research and Technology Institute – Bulgarian Academy of Sciences.
- Vassileva, K., & Atanasova, M. (2016). Earth movements on the territory of Bulgaria and Northern Greece from GPS observations. Comptes rendus de l’Académie bulgare des Sciences, 69(11). https://doi.org/10.3997/2214-4609.201414233
- Wu, X., Ray, J., & van Dam, T. (2012). Geocenter motion and its geodetic and geophysical implications. Journal of Geodynamics, 58, 44–61. https://doi.org/10.1016/j.jog.2012.01.007
- Xiang, Y., Yue, J., Liu, G., & Chen, Y. (2022). Characterizing the spatial patterns of vertical crustal deformations over the South American continent based on GNSS imaging. Pure and Applied Geophysics, 179(10), 3569–3587. https://doi.org/10.1007/s00024-022-03144-3
- Zhou, Y., He, J., Oimahmadov, I., Gadoev, M., Pan, Z., Wang, W., Abdulov, S., & Rajabov, N. (2016). Present-day crustal motion around the Pamir Plateau from GPS measurements. Gondwana Research, 35, 144–154. https://doi.org/10.1016/j.gr.2016.03.011