Ukrainian Antarctic Journal

Vol 21 No 1(26) (2023): Ukrainian Antarctic Journal
Articles

Bioactive substances of Colobanthus quitensis (Kunth) Bartl. from the Darboux and Lagotellerie Islands, western coast of Antarctic Peninsula

R. Ivannikov
M. M. Gryshko National Botanic Garden of National Academy of Sciences of Ukraine, Kyiv, 01014, Ukraine
V. Anishchenko
L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of National Academy of Sciences of Ukraine, Kyiv, 02160, Ukraine
O. Poronnik
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03680, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
G. Myryuta
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03680, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
N. Miryuta
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
O. Boyko
M. M. Gryshko National Botanic Garden of National Academy of Sciences of Ukraine, Kyiv, 01014, Ukraine
L. Hrytsak
Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, 46027, Ukraine
I. Parnikoza
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03680, Ukraine; National University of Kyiv-Mohyla Academy, Kyiv, 04655, Ukraine
Published August 31, 2023
Keywords
  • Antarctic pearlwort,
  • high-performance liquid chromatography,
  • metabolite content
How to Cite
Ivannikov, R., Anishchenko, V., Poronnik, O., Myryuta, G., Miryuta, N., Boyko, O., Hrytsak, L., & Parnikoza, I. (2023). Bioactive substances of Colobanthus quitensis (Kunth) Bartl. from the Darboux and Lagotellerie Islands, western coast of Antarctic Peninsula. Ukrainian Antarctic Journal, 21(1(26), 90-102. https://doi.org/10.33275/1727-7485.1.2023.710

Abstract

The study aimed to investigate a wide spectrum of biologically active substances of an aboriginal Antarctic plant (Colobanthus quitensis) from the central and southern parts of its Antarctic part of general spread collected in 2020–2022. For 17 plants from 2 populations, we obtained extracts and analyzed them using high-throughput chromatography (HPLC). This was the first biochemical screening of plants from previously not investigated parts of this species’ range (Graham Coast and Marguerite Bay in the maritime Antarctic). The HPLC method characterized the overall metabolite pools and their separate components which could potentially have high biological activity. The most numerous groups of compounds included phenols and benzoic acids, hydroxybenzoic acids, hydroxycinnamic acids, flavonoids, apigenin glycosides, luteolin glycosides, tricin glycosides, flavonoid conjugates of the hydroxycinnamic acids, chlorophyll catabolites, carotenoids, terpenoids, and sterols. The quantitative content of the pearlwort’s metabolites depended on the population, probably due to the differences in the microhabitats. Meanwhile, such variability offers a wide selection of possible targets for biochemical screening. The Antarctic pearlwort is richer in some conjugates (such as flavonoid conjugates with the hydroxybenzoic acids) than the other Antarctic aboriginal plant – Antarctic hairgrass (Deschampsia antarctica). The determined substances might potentially be of great practical significance.

References

  1. Amarowicz, R., Weidner, S., Wójtowicz, I., Karamac, M., Kosinska, A., & Rybarczyk, A. (2010). Influence of low-temperature stress on the changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Functional Plant Science and Biotechnology, 4, 90–96.
  2. Bertini, L., Proietti, S., Fongaro, B., Holfeld, A., Picotti, P., Falconieri, G. S., Bizzarri, E., Capaldi, G., Polverino de Laureto, P., & Caruso, C. (2022). Environmental signals act as a driving force for metabolic and defense Responses in the An tarctic plant Colobanthus quitensis. Plants, 11, 3176. https://doi.org/10.3390/plants11223176
  3. Chen, D., Daniel, K. G., Kuhn, D. J., Kazi, A., Bhuiyan, M., Li, L., Wang, Z., Wan, S. B., Lam, W. H., Chan, T. H., & Dou, Q P. (2004). Green tea and tea polyphenols in cancer prevention. Frontiers in Bioscience, 9, 2618–2631. https://doi.org/10.2741/1421
  4. Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72(1), 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009
  5. Chowdhary, V., Alooparampil, S., Pandya, R. V., & Tank, J. G. (2022). Physiological function of phenolic compounds in plant defense system. In F. A. Badria, Phenolic Compounds. Intech Open. https://doi.org/10.5772/intechopen.101131
  6. Clemente-Moreno, M. J., Omranian, N., Sáez, P., Figueroa, C. M., Del-Saz, N., Elso, M., Poblete, L., Orf, I., Cuadros-Inostroza, A., Cavieres, L., Bravo, L., Fernie, A., RibasCarbó, M., Flexas, J., Nikoloski, Z., Brotman, Y., & Gago, J. (2020). Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis. New Phytologist, 225(2), 754–768. https://doi:10.1111/nph.16167
  7. Contreras, R. A., & Zúñiga, G. E. (2018). Flavone Synthase II (CYP93B) of Antarctic Plant Colobanthus quitensis (Kunth) Bartl. Journal of Natural Products and Resources, 4(2), 196–198. https://doi.org/10.30799/jnpr.067.18040206
  8. Contreras, R. A., Pizarro, M., Köhler, H., Zamora, P., & Zúñiga, G. E. (2019). UV-B shock induces photoprotective flavonoids but not antioxidant activity in Antarctic Colobanthus quitensis (Kunth) Bartl. Environmental and experimental botany, 159, 179–190. https://doi.org/10.1016/j.envexpbot.2018.12.022
  9. Contreras, R. A., Pizarro, M., Pena-Heyboer, N., Mendoza, L., Sandoval, C., Munoz-Gonzales, R., & Zuńiga, G. E. (2022). Antifungal activity of extracts from the Antarctic plant Colobanthus quitensis Kunth. (Bartl) cultured in vitro against Botrytis cinerea Pers. Archives of Phytopathology and Plant Protection, 55(5), 615–635. https://www.tandfonline.com/doi/abs/10.1080/03235408.2022.2035965
  10. Cuba-Diaz, M., Marin, C., Castel, K., Machuca, A., & Rifo, S. (2017). Effect of copper (II) ions on morpho-physiological and biochemical variables in Colobanthus quitensis. Journal of Soil Science and Plant Nutrition, 17(2), 429–440. http://dx.doi.org/10.4067/S0718-95162017005000031
  11. Dinkova-Kostova, A. T., & Talalay, P. (2008). Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Molecular Nutrition & Food Research, 52, S128–S138. https://doi.org/10.1002/mnfr.200700195
  12. Fernández-Marín, B., Gulías, J., Figueroa, C. M., Iñiguez, C., Clemente-Moreno, M. J., Nunes-Nesi, A., Fernie, A. R., Cavie res, L. A., Bravo, L. A., García-Plazaola, J. I., & Gago, J. (2020). How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. The Plant Journal, 101(4), 979–1000. https://doi.org/10.1111/tpj.14694
  13. Gostner, J. M., Becker, K., Fuchs, D., & Sucher, R. (2013). Redox regulation of the immune response. Redox Report, 18, 88–94. https://doi.org/10.1179/1351000213Y.0000000044
  14. Groenbaek, M., Tybirk, E., Neugart, S., Sundekilde, U. K., Schreiner, M., & Kristensen, H. L. (2019). Flavonoid glycosides and hydroxycinnamic acid derivatives in baby leaf rapeseed from white and yellow flowering cultivars with repeated harvest in a 2-years field study. Frontiers in Plant Science, 10, 355. https://doi.org/10.3389/fpls.2019.00355
  15. Harborne, J. B. (1984). Phytochemical methods. A guide to modern techniques of plant analysis (2nd ed.). Springer Dordrecht. https://doi.org/10.1007/978-94-009-5570-7
  16. Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Fla vonoid antioxidants: chemistry, metabolism and structure activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5
  17. Ivannikov, R., Anishchenko, V., Kuzema, P., Stavinskaya, O., Laguta, I., Poronnik, O., & Parnikoza, I. (2022). Chromatographic and mass spectrometric analysis of secondary metabolites of Deschampsia antarctica from Galindez Island, Argentine Islands. Polish Polar Research, 43(4), 341–362. https://doi.org/10.24425/ppr.2022.140369
  18. Ivannikov, R., Laguta, I., Anishchenko, V., Skorochod, I., Kuzema, P., Stavinskaya, O., Parnikoza, I., Poronnik, O., Myryuta, G., & Kunakh, V. (2021). Composition and radical scavenging activity of the extracts from Deschampsia antarctica É. Desv. plants grown in situ and in vitro. Chemistry Journal of Moldova, 16(1), 105–114. https://doi.org/10.19261/cjm.2021.841
  19. Jacquemin, G., Shirley, S., & Micheau, O. (2010). Combining naturally occurring polyphenols with TNF-related apoptosis-inducing ligand: a promising approach to kill resistant cancer cells? Cellular and Molecular Life Sciences, 67, 3115–3130. https://doi.org/10.1007/s00018-010-0407-6
  20. Kovaliov, V. M., Pavliy, O. I., & Isakova, T. I. (2000). Far makognoziya z osnovamy biokhimii roslyn. [Pharmacognosy with the basics of plant biochemistry]. Prapor. https://dspace.nuph.edu.ua/handle/123456789/9820 (In Ukrainian)
  21. Kräutler, B. (2016). Breakdown of chlorophyll in higher plants—phyllobilins as abundant, yet hardly visible signs of ripening, senescence and cell death. Angewandte Chemie, 55, 4882–4907. https://doi.org/10.1002/anie.201508928
  22. Kumar, S., Abedin, M. M., Singh, A. K., & Das, S. (2020). Role of phenolic compounds in plant-defensive mechanisms. In R. Lone, R. Shuab, & A. Kamili (Eds.), Plant Phenolics in Sustainable Agriculture (pp. 517–532). Springer. Singapore. https://doi.org/10.1007/978-981-15-4890-1_22
  23. Lutz, C., Blassnigg, M., & Remias, D. (2008). Different flavonoid patterns in Deschampsia antarctica and Colobanthus quitensis from the Marine Antarctic. In C. Wiencke, G. A. Ferreyra, D. Abele, & S. Marenssi (Eds.), The Antarctic ecosystem of Potter Cove, King-George Island (Isla 25 de Mayo) Synopsis of research performed 1999–2006 at the Dallmann Laboratory and Jubany Station (Vol. 571, pp. 192–199). Berichte zur Polar- und Meeresforschung.
  24. Malesev, D., & Kuntic, V. (2007). Investigation of metal–flavonoid chelates and the determination of flavonoids via metal–flavonoid complexing reactions. Journal of the Serbian Chemical Society, 72, 921–939. https://doi.org/10.2298/JSC0710921M
  25. Markham, K. R., Ryan, K. G., Bloor, S. J., & Mitchell, K. A. (1998). An increase in the luteolin: Apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry, 48(5), 791–794. https://doi.org/10.1016/S0031-9422(97)00875-3
  26. Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13, 100217. https://doi.org/10.1016/j.fochx.2022.100217
  27. Montesinos, M. C., Ubeda, A., Terencio, M. C., Payá, M., & Alcaraz, M. J. (1995). Antioxidant profile of mono- and dihydroxylated flavone derivatives in free radical generating systems. Zeitschrift fur Naturforschung, 50, 552–560. https://doi.org/10.1515/znc-1995-7-813
  28. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83, 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  29. Ozheredova, I. P., Parnikoza, I. Yu., Poronnik, O. O., Koze retska, I. A., Demidov, S. V., & Kunakh, V. A. (2015). Mechanisms of Antarctic vascular plant adaptation to abiotic environmental factors. Cytology and Genetics, 49(2), 139–145. https://doi.org/10.3103/S0095452715020085
  30. Parnikoza, I., Miryuta, N., Ozheredova, I., Kozeretska, I., Smykla, J., Kunakh, V., & Convey, P. (2015). Comparative ana lysis of Deschampsia antarctica Desv. population adaptability in the natural environment of the Admiralty Bay region (King George Island, maritime Antarctic). Polar Biology, 38(9), 1401–1411. https://doi.org/10.1007/s00300-015-1704-1
  31. Pereira, K. B., Rosa, R. M., Silva, J., Guecheva, T. N., de Oliveira, I. M., Ianistcki, M., Benvegnú, V. C., Furtado, G. V., Ferraz, A., Richter, M. F., Schoder, N., Pereira, A. B., & Henriques, J. A. P. (2009). Protective effects of three extracts from Antarctic plants against ultraviolet radiation in several biologi cal models. Journal of Photochemistry and Photobiology B: Biology, 96(2), 117–129. https://doi.org/10.1016/j.jphotobiol.2009.04.011
  32. Pollard, J. H. (2009). A Handbook of Numerical and Statistical Techniques. Cambridge University Press. https://doi.org/10.1017/CBO9780511569692
  33. Poor, M., Kunsagi-Mate, S., Bencsik, T., Petrik, J., Vladimir-Knezevic, S., & Koszegi, T. (2012). Flavonoid aglycones can compete with Ochratoxin A for human serum albumin: a new possible mode of action. International Journal of Biological Macromolecules, 51(3), 279–283. https://doi.org/10.1016/j.ijbiomac.2012.05.019
  34. Rodríguez-García, C., Sánchez-Quesada, C., Toledo, E., Delgado-Rodríguez, M., & Gaforio, J. J. (2019). Naturally lignan-rich foods: a dietary tool for health promotion? In D. Barker (Ed.), Lignans. MDPI. https://doi.org/10.3390/molecules24050917
  35. Ruhland, C. T., & Day, T. A. (2001). Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colo banthus quitensis seedlings. Environmental and Experimental Botany, 45, 143–154. https://doi.org/10.1016/S0098-8472(00)00089-7
  36. Ruhland, C. T., Xiong, F. S., Clark, W. D., & Day, T. A. (2005). The influence of ultraviolet-B radiation on growth hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica. Photochemistry and Photobiology, 81, 1086–1093. https://doi.org/10.1562/2004-09-18-RA-321
  37. Senaratna, T., Merritt, D., Dixon, K., Bunn, E., Touchell, D., & Sivasithamparam, K. (2003). Benzoic acid may act as the functional group in salicylic acid and derivatives in the induc tion of multiple stress tolerance in plants. Plant Growth Regulation, 39, 77–81. https://doi.org/10.1023/A:1021865029762
  38. Smith, G. J., & Markham, K. R. (1996). The dissipation of excitation energy in methoxyflavones by internal conversion. Journal of Photochemistry and Photobiology A: Chemistry, 99(2–3), 97–101. https://doi.org/10.1016/S1010-6030(96)04401-2
  39. Sova, M., & Saso, L. (2020). Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients, 12(8), 2190. https://doi.org/10.3390/nu12082190
  40. Szymańska, R., Ślesak, I., Orzechowska, A., & Kruk, J. (2017). Physiological and biochemical responses to high light and temperature stress in plants. Environmental and Experimental Botany, 139, 165–177. https://doi.org/10.1016/j.envexpbot.2017.05.002
  41. Tringali, C. (Ed.). (2001). Bioactive Compounds from Natural Sources: Isolation, Characterization and Biological Properties (1st ed.). Taylor & Francis Publishing. https://doi.org/10.1201/9781482289268
  42. Yastreb, T. O., Kolupaev, Yu. Ye., & Vayner, A. O. (2012). Induction of heat resistance in wheat coleoptiles by 4-hyd roxybenzoic acid: connection with the generation of reactive oxygen species. Journal of Stress Physiology & Biochemistry, 8(3), 72–81.
  43. Younas, M., Hano, C., Giglioli-Guivarc’h, N., & Abbasi, B. H. (2018). Mechanistic evaluation of phytochemicals in breast cancer remedy: Current understanding and future perspectives. RSC Advances, 8, 29714–29744. https://doi.org/10.1039/C8RA04879G
  44. Xiong, F. S., Ruhland, C. T., & Day, T. A. (2002). Effect of springtime solar ultraviolet-B radiation on growth of Colobanthus quitensis at Palmer Station, Antarctica. Global Change Biology, 8(11), 1146–1155. https://doi.org/10.1046/j.1365-2486.2002.00539.x