Ukrainian Antarctic Journal

Vol 22 No 1(28) (2024): Ukrainian Antarctic Journal
Articles

Exploring an antioxidant and hemostasis activity of peptides from Antarctic krill Euphausia superba

Nataliia Raksha
Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Tetiana Halenova
Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Tetiana Vovk
Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Olexiy Savchuk
Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Tetyana Beregova
Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Lyudmila Ostapchenko
Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Published September 7, 2024
Keywords
  • Antarctic hydrobiont,
  • endogenous peptides,
  • hydrolytic peptides
How to Cite
Raksha, N., Halenova, T., Vovk, T., Savchuk, O., Beregova, T., & Ostapchenko, L. (2024). Exploring an antioxidant and hemostasis activity of peptides from Antarctic krill Euphausia superba. Ukrainian Antarctic Journal, 22(1(28), 51-62. https://doi.org/10.33275/1727-7485.1.2024.727

Abstract

The goal of the study was to obtain the fractions of endogenous and hydrolytic peptides from the hydrobiont Euphausia superba and evaluate their antioxidant potential and possible activity against certain hemostasis factors. The fraction of endogenous peptides was isolated by stepwise precipitation of proteins with perchloric acid and ethanol. Peptides with a molecular weight up to 5 kDa were isolated by by ultrafiltration. Hydrolysis with trypsin was used to obtain hydrolytic peptides. The purity of peptide fractions was confirmed by SDS-polyacrylamide gel electrophoresis. Antioxidant activity was assessed by analyzing the peptides’ reducing power, 2,2-diphenyl-1-picrylhydrazyl, and nitric oxide radical scavenging activity. To assess the effect of peptides on the amidolytic activity of thrombin, active thrombin was preincubated with peptide fractions, and further thrombin activity was determined using the chromogenic substrate S2238. The ability of the peptides to influence ADP-induced platelet aggregation was tested in platelet-rich plasma. The results showed that endogenous and hydrolytic peptides exhibit moderate antioxidant activity; however, endogenous peptides were more potent antioxidants than peptides produced by trypsin hydrolysis. The influence of E. superba peptides on some hemostasis factors has been established. Inhibition of ADP-induced platelet aggregation by hydrolytic peptides (by 1.76 times) was found, while endogenous peptides possess the opposite effect. The differences in the activity and effectiveness of the peptides indicate that the fractions contain molecules that differ in amino acid composition. Considering the data, E. superba can be a source for peptides with moderate antioxidant activity and peptides that can affect the activity of key hemostasis factors.

References

  1. Ahmed, I., Asgher, M., Sher, F., Hussain, S. M., Nazish, N., Joshi, N., Sharma, A., Parra-Saldívar, R., Bilal, M., & Iqbal, H. M. N. (2022). Exploring marine as a rich source of bioactive peptides: challenges and opportunities from marine pharmacology. Marine Drugs, 20(3), 208. https://doi.org/10.3390/md20030208
  2. Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences, 23(3), 1445. https://doi.org/10.3390/ijms23031445
  3. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2017). Marine natural products. Natural Product Reports, 34, 235–294. https://doi.org/10.1039/C6NP00124F
  4. Cappello, E., & Nieri, P. (2021). From life in the sea to the clinic: the marine drugs approved and under clinical trial. Life, 11(12), 1390. https://doi.org/10.3390/life11121390
  5. Cargnelutti, M. T., Marques, A. F., Esser, D., Monteiro, R. Q., Kassack, M. U., & Lima, L. M. T. R. (2012). Allosteric activation of human α-thrombin through exosite 2 by suramin analogs. Archives of Biochemistry and Biophysics, 520(1), 36–41. https://doi.org/10.1016/j.abb.2012.02.001
  6. Carson, M. A., & Clarke, S. A. (2018). Bioactive compounds from marine organisms: potential for bone growth and healing. Marine Drugs, 16(9), 340. https://doi.org/10.3390/md16090340
  7. Chen, Y.-C., Tou, J. C., & Jaczynski, J. (2009). Amino acid and mineral composition of protein and other components and their recovery yields from whole Antarctic krill (Euphausia superba) using isoelectric solubilization/precipitation. Journal of Food Science, 74(2), H31–H39. https://doi.org/10.1111/j.1750-3841.2008.01026.x
  8. Chiang, H.-S., Yang, R.-S., & Huang, T.-F. (1995). The Arg-Gly-Asp-containing peptide, rhodostomin, inhibits in vitro cell adhesion to extracellular matrices and platelet aggregation caused by saos-2 human osteosarcoma cells. British Journal of Cancer, 71(2), 265–270. https://doi.org/10.1038/bjc.1995.54
  9. Corrochano, A. R., Cal, R., Kennedy K., Wall, A., Murphy, N., Trajkovic, S., O’Callaghan, S., Adelfio, A.,& Khaldi, N. (2021). Characterising the efficacy and bioavailability of bioactive peptides identified for attenuating muscle atrophy within a Vicia faba-derived functional ingredient. Current Research in Food Science, 4, 224–232. https://doi.org/10.1016/j.crfs.2021.03.008
  10. Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. (2021). Enzymatic hydrolysis and microbial fermentation: the most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences, 3, 100047. https://doi.org/10.1016/j.fochms.2021.100047
  11. Daskaya-Dikmen, C., Yucetepe, A., Karbancioglu-Guler, F., Daskaya, H., & Ozcelik, B. (2017). Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients, 9(4), 316. https://doi.org/10.3390/nu9040316
  12. Fu, W., Chen, J., Cai, Y., Lei, Y., Chen, L., Pei, L., Zhou, D., Liang, X., & Ruan, J. (2010). Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.) Ching. Journal of Ethnopharmacology, 130(3), 521–528. https://doi.org//10.1016/j.jep.2010.05.039
  13. Fujii, J., Homma, T., & Osaki, T. (2022). Superoxide radicals in the execution of cell death. Antioxidants, 11(3), 501. https://doi.org/10.3390/antiox11030501
  14. Halenova, T., Raksha, N., Savchuk, O., Ostapchenko, L., Prylutskyy, Yu., Ritter, U., & Scharff, P. (2020). Evaluation of the biocompatibility of water-soluble pristine C60 fullerenes in rabbit. BioNanoScience, 10(3), 721–30. https://doi.org/10.1007/s12668-020-00762-w
  15. Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical Society Transactions, 35(5), 1147–1150. https://doi.org/10.1042/bst0351147
  16. Jo, C., Khan, F. F., Khan, M. I., & Iqbal, J. (2016). Marine bioactive peptides: Types, structures, and physiological functions. Food Reviews International, 33(1), 44–61. https://doi.org/10.1080/87559129.2015.1137311
  17. Khatri, M., Naughton, R. J., Clifford, T., Harper, L. D., & Corr, L. (2021). The effects of collagen peptide supplementation on body composition, collagen synthesis, and recovery from joint injury and exercise: a systematic review. Amino Acids, 53(10), 1493–1506. https://doi.org/10.1007/s00726-021-03072-x
  18. Li, Y., Peng, Z., Tan, L., Zhu, Y., Zhao, C., Zeng, Q.-H., Liu, G., Wang, J. J., & Zhao, Y. (2022). Structural and functional properties of soluble Antarctic krill proteins covalently modified by rutin. Food Chemistry, 379, 132159. https://doi.org/10.1016/j.foodchem.2022.132159
  19. Li, Y., Zeng, Q.-H., Liu, G., Chen, X., Zhu, Y., Liu, H., Zhao Y., & Wang, J. J. (2020). Food-grade emulsions stabilized by marine Antarctic krill (Euphausia superba) proteins with long-term physico-chemical stability. LWT, 128, 109492. https://doi.org/10.1016/j.lwt.2020.109492
  20. Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/oxygen2020006
  21. Moon, J.-K., & Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, 57(5), 1655–1666. https://doi.org/10.1021/jf803537k
  22. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  23. Nikolajchik, V., Moin, V., & Kirkovskij, V. (1991). A method for the identification of median molecules. Laboratornoe delo, 10, 13–8. (In Russian)
  24. Rengasamy, K. R. R., Khan, H., Ahmad, I., Lobine, D., Mahomoodally, F., Suroowan, S., Hassan, S. T. S., Xu, S., Patel, S., Daglia, M., Nabavi, S. M., & Pandian, S. K. (2019). Bioactive peptides and proteins as alternative antiplatelet drugs. Medicinal Research Reviews, 39(6), 2153–2171. https://doi.org/10.1002/med.21579
  25. Romano, G., Almeida, M., Coelho, V. A., Cutignano, A., Gonçalves, L. G., Hansen, E., Khnykin, D., Mass, T., Ramšak, A., Rocha, M. S., Silva, T. H., Sugni, M., Ballarin, L., & Genevière, A. M. (2022). Biomaterials and bioactive natural products from marine invertebrates: from basic research to innovative applications. Marine Drugs, 20(4), 219. https://doi.org/10.3390/md20040219
  26. Royer, M., Diouf, P. N., & Stevanovic, T. (2011). Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts. Food and Chemical Toxicology, 49(9), 2180–2188. https://doi.org/10.1016/j.fct.2011.06.003
  27. Sayin, V. I., Ibrahim, M. X., Larsson, E., Nilsson, J. A., Lindahl, P., & Bergo, M. O. (2014). Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine, 6(221), 221ra15. https://doi.org/10.1126/scitranslmed.3007653
  28. Wang, Y.-Z., Zhao, Y.-Q., Wang, Y.-M., Zhao, W.-H., Wang, P., Chi, C.-F., & Wang, B. (2021). Antioxidant peptides from Antarctic Krill (Euphausia superba) hydrolysate: preparation, identification and cytoprotection on H2O2-induced oxidative stress. Journal of Functional Foods, 86, 104701. https://doi.org/10.1016/j.jff.2021.104701
  29. Wendelboe, A. M., & Raskob, G. E. (2016). Global burden of thrombosis: epidemiologic aspects. Circulation Research, 118(9), 1340–1347. https://doi.org/10.1161/CIRCRESAHA.115.306841
  30. Xu, N., Chen, G., & Liu, H. (2017). Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules, 22(12), 2066. https://doi.org/10.3390/molecules22122066
  31. Zhang, S. Y., Zhao, G.-X., Suo, S.-K., Wang, Y.-M., Chi, C.-F., & Wang, B. (2021). Purification, identification, activity evaluation, and stability of antioxidant peptides from alcalase hydrolysate of Antarctic krill (Euphausia superba) proteins. Marine Drugs, 19(6), 347. https://doi.org/10.3390/md19060347
  32. Zhang, T., Jiang, B., Miao, M., Mu, W., & Li, Y. (2012). Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry, 135(3), 904–912. https://doi.org/10.1016/j.foodchem.2012.05.097
  33. Zou, T.-B., He, T.-P., Li, H.-B., Tang, H.-W., & Xia, E.-Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1), 72. https://doi.org/10.3390/molecules21010072